WORKSHEET 5.1: BONDING INTRODUCTION

Name: \qquad Date: \qquad

1. Which groups of elements in the periodic table of elements will form
a. network covalent compounds - compound made of C and Si
b. metallic compounds - compound made of only metals (Na , alloy $-\mathrm{Ni} \& \mathrm{Cu}$)
c. ionic compounds - compounds made cation and anion
d. molecular compounds - compounds made non-metals only
2. Predict whether the bonding between the atoms in the following substances will be network, metallic, ionic or covalent.
a. $\mathrm{KCl}_{(\mathrm{s})}$ I
b. $\quad \mathrm{Mg}_{(\mathrm{s})} \mathrm{M}$
c. $\mathrm{CaO}_{(\mathrm{s})}$ I
d. $\quad \mathrm{O}_{2(\mathrm{~g})} \mathrm{C}$
e. $\quad \mathrm{NO}_{2(\mathrm{~g})} \mathrm{C}$
f. $\quad \mathrm{Ag}_{(\mathrm{s})} \mathrm{M}$
g. $\mathrm{BaCl}_{2(\mathrm{~s})}$ I
h. $\mathrm{S}_{8(\mathrm{~s})} \mathrm{C}$
i. $\quad \mathrm{SO}_{2(g)} \mathrm{C}$
j. $\quad \operatorname{CsF}_{(s)}$ I
k. $\quad \mathrm{C}_{4(\mathrm{~s})} \mathrm{N}$
I. $\quad \operatorname{SiC}_{(\mathrm{s})} \mathrm{N}$
3. Define and give one characteristic for each of the following:
a. A chemical bond: net attraction between the positive protons and negative electrons
b. A covalent bond: attraction between shared electrons and the positive nuclei
c. An ionic bond: attraction between cation and anion
d. An metallic bond: attraction between sea of electrons and positive metal nuclei
e. A network bond: attraction between a network of shared electrons and C or Si nuclei

WORKSHEET 5.2: BASICS OF BONDING

1. Draw energy level diagrams for:
a) ${ }_{11} \mathrm{Na}^{23}$ and Na^{+}

1e- lost e
8e- 8e-
2e- 2e-
11p,12n 11p12n
b) ${ }_{8} \mathrm{O}^{15}$ and O^{2-} $6 \mathrm{e}-\quad 6 \mathrm{e}-+2 \mathrm{e}-$
2e- 2e-
8p, 7n 8p, 7n
2. Predict and fill in the rest of the valence shell representations for the first 36 elements

3. Draw the electron dot diagrams for the first 20 elements.

$\begin{gathered} \text { HYDROGEN } \\ 1 \end{gathered}$	$\begin{aligned} & \text { PERIODIC TABLE } \\ & \text { ELEMENTS 1-20 } \end{aligned}$						nelem
${ }_{\text {unumm }}$	seamaum	${ }_{\text {coman }}$	${ }_{\text {cmanon }}^{\text {cos }}$	Mrrooem	${ }_{\text {oxicen }}$	Rouma	meon
Li ${ }^{\text {- }}$	$\overrightarrow{B e}$	- $\dot{\text { B }}$	- \dot{C}	$\cdot \mathrm{N}$:	-0̈:	: \ddot{F} :	:Ne:
soumm	${ }^{\text {mounssum }}$	${ }^{\text {aumum }}$	${ }_{\text {sulacon }}^{1 / 4}$	centious	${ }_{\text {surfur }}^{\text {sibe }}$	${ }_{\text {cmomes }}^{\text {cha }}$	${ }_{\text {magen }}^{\text {mic }}$
Na -	$\mathbf{M g}$ -	- $\dot{\text { II }}$	- $\dot{\text { S }}$ -	$\cdot \dot{\mathrm{P}}$:	- S :	:C]:	: $\ddot{\text { Är }}$:
porssum	$\xrightarrow{\text { cancoum }}$ 20						
K ${ }^{\text {- }}$	Ca.						

4. Draw the electron dot diagrams for the first 14 ions. Hydrogen has two ions.

$[\mathrm{H}]^{+}$ $[\mathrm{H}:]^{-}$	
$[\mathrm{Li}]^{+}$	
$[\mathrm{Be}]^{2+}$	
$[\mathrm{Na}]^{+}$	

5. Complete the following table.

	Group \#	$\frac{\text { Gain/Lose }}{\mathbf{e}^{-}}$	$\underline{\text { Name of Ion }}$	$\underline{\text { Ion formula }}$	$\frac{\text { Nobel Gas }}{\frac{\text { Most Like }}{}}$
sodium	1	Lose 1e	Sodium ion	Na^{+}	Ne
magnesium	2	Lose 2e	Magnesium ion	Mg^{2+}	Ne
sulfur	16	Gains 2e	Sulfide ion	S^{2-}	Ar
chlorine	17	Gains 1e	Chloride ion	Cl^{1-}	Ar

6. Name and draw the Lewis dot diagrams for 4 ionic compounds that could form from the table above.

Sodium sulfide: $[\mathrm{Na}]^{1+}-\left[: \ddot{S}_{:}^{\prime}\right]^{2-}-[\mathrm{Na}]^{1+}$
Sodium chloride: $[\mathrm{Na}]^{1+}\left[:\left[\begin{array}{c}\mathrm{Cl} \\ :\end{array}\right]^{1-}\right.$
Magnesium sulfide $[\mathrm{Mg}]^{2+}-[: \stackrel{\mathrm{Si}}{\mathrm{H}}]^{2-}$
Magnesium chloride: $[: C \underline{C l}:]^{1-}-[\mathrm{Mg}]^{2+}-[: C \ddot{C l}:]^{1-}$
7. Does carbon gain or lose electrons to achieve a stable electron configuration. HINT look at your periodic table. It does neither. It can't decide whether to gain 4 or lose 4 e so it does neither. Instead is shares 4 electrons - over 80 of all molecular compounds contain carbon. (ORGANIC CHEMISTRY)
8. What observable evidence is there that the electron structure in Noble Gases is stable? Noble Gases are inert; shells are full of at least 8 electrons (octet rule); Exception is Helium
9. Define \& give an example of
a. bonding electrons: 1 electron on the last shell
b. Ione pair: pair of electrons that are not active (Paul's Exclusion)
c. ionic bond: transfer of electrons creating a cation and anion that are attracted to each other; NaCl
d. network covalent bond: sharing of electrons between Cs and/or Sis forming a network
e. metallic bond: sea of electrons attracted to metal positive nuclei
10. Based on electronegativity describe what type of bond would form between:
a. $\quad \mathrm{Br}_{2}: 3.0-3.0=0$; covalent non-polar
b. CO: $2.6-3.5=0.9$; covalent polar
c. Hydrogen phosphide: $\mathrm{H}_{3} \mathrm{P} 2.2-2.2=0$; but it is pyramidal = covalent polar
d. Lithium nuclei - Li; 1.0-1.0 = 0; metallic
e. Argon nuclei - Ar: no electronegativity = inhert (non-reactive and no bonds)
f. Potassium sulfide $\mathrm{K}_{2} \mathrm{~S}$: $0.8-2.6=1.8$; ionic

WORKSHEET 5.3: IONIC COMPOUNDS

1. Silver sulfide tarnish (sulfur):
a) Write a balanced simple composition reaction. Identify the type of reaction. Identify the element that is undergoing reduction and the element that is undergoing oxidation.
$16 \mathrm{Ag}_{(\mathrm{s})}+\mathrm{S}_{8(\mathrm{~s})} \rightarrow 8 \mathrm{Ag}_{2} \mathrm{~S}_{(\mathrm{s})}$ Formation

BONUS: Write the reduction and oxidation reactions below.
$\mathrm{Ag}(\mathrm{s}) \rightarrow \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+1 \mathrm{e}$ Oxidation reaction
$\mathrm{S}_{8(\mathrm{~s})}+16 \mathrm{e}-\rightarrow 8 \mathrm{~S}^{2-}{ }_{(\text {aq) }}$ Reduction reaction
b) Write out the formula unit for silver sulfide using dot diagrams.
[Ag] ${ }^{+}-\left[: \text {S̈: }^{-}\right]^{2-}-[A g]^{+}$
c) Write any evidences of a reaction.

New precipitate forms. Silver changes color
d) How could the silver sulfide tarnish removed?

Chemically with a polish or mechanically by rubbing it
2. Fertilizers are made of ammonium dihydrogen phosphate, ammonium nitrate and ammonium sulfate.
a) Write the formula unit for each compound. Verify the formula unit by showing that the net charge is zero. Identify the cation and anion.
$\left[\mathrm{NH}_{4}\right]^{1+}\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]^{1-},\left[\mathrm{NH}_{4}\right]^{1+}\left[\mathrm{NO}_{3}\right]^{1-},\left[\mathrm{NH}_{4}\right]_{2}{ }^{1+}\left[\mathrm{SO}_{4}\right]^{2-}$,
b) Identify three physical properties that each of these compounds may have. Conduct electricity (electrolyte), colorful, solid at room temp, high melting point, soluble in water (aq)
3. Sodium chloride, found in the Lotsberg formation below Fort Saskatchewan is in a solid crystal form. The formation is too deep to be mined.
a) Write out a reaction for the formation of sodium chloride from its elements. $2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~s})} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{s})}$ Formation
b) What evidence is there that a reaction occurred? New precipitate forms. Na changes from a silver to a white salt
c) What are the solubility, color and approximate melting point of sodium chloride?
Solubility: very soluble; Color: white; melting point is above 300C
d) Knowing that salt is very soluble in warm water, how could sodium chloride be removed from the ground?
Pump warm water into the ground, let the salt dissolve, and remove the salt water from the ground.
e) Why is iron (III) oxide not recovered the same way as sodium chloride. (Hint: Is iron (III) oxide soluble in water) Iron(III) oxide is not soluble in water, therefore it needs to be mined.

WORKSHEET 3.4: LEWIS DOT DIAGRAMS FOR ELEMENTS
1.

Fill in the Table Below. The first one is done for you.

NAME \& SYMBOL	TOTAL \# OF Valence Electrons	Electron Dot Diagram	TOTAL\# of Lone Pairs	\# OF BONDING Electrons in One Atom	Bonding Capacity or Shared Pairs	Electron Configuration of one atom
F Fluorine	7		3	1	1	$2 s^{2} 2 p^{5}$
H HYDROGEN	1	H	0	1	1	$1 s^{1}$
He HELIUM	2	He	1	0	0	$1 \mathrm{~s}^{2}$
Be Beryllium	2	- Be ${ }^{\text {- }}$	0	2	2	$2 s^{2}$
AI	3	Al^{\bullet}	0	3	3	$3 s^{2} 3 p^{1}$
C	4		0	4	4	$2 s^{2} 2 p^{2}$
N_{2}	10	N:: $: \stackrel{\circ}{N}$:N:::N: triple	2	3	3	$2 s^{2} 2 p^{3}$
O_{2}	12	$\begin{aligned} & : 0:: 00 \\ & \text { double } \end{aligned}$	4	2	2	$2 s^{2} 2 p^{4}$

Cl_{2}	14	$\begin{aligned} & \bullet С \mathrm{Cl}: \stackrel{\bullet}{C l}: \\ & \bullet \bullet \bullet \\ & \text { single } \end{aligned}$	6	1	1	$3 s^{2} 3 p^{5}$
S_{8}	48	:S:S:క: :S:" :S: :'S:S':S':	16	2	2	$3 s^{2} 3 p^{4}$

2. What is a covalent bond?

Electrostatic attraction between the positive non-metal nuclei and the negative shared valence electrons
3. What elements form covalent bonds?

Non-metals
4. Using electronegativity, how do I know if I have a covalent bond?

Electronegativity is a measure of the atoms desire for electrons between 0 \& 4 .
If you subtract the electronegativity and the number is less than 1.7 than the bond is considered to be covalent.
5. What determines the bond distance?

The minimum energy required to keep atoms together determines the bond distance.
6. What are two differences between ionic and covalent bonds?

Melting point above 300C
Conductivity

Worksheet 3.5: Lewis Dot Diagrams For Compounds

Name	Formula	TOTAL\# OF Valence ELECTRONS	Electron Dot Diagram	TOTAL\# OF Lone Pairs	\# \& TYPES OF BONDS (SINGLE, DOUBLE, TRIPLE, COORDINATE)
Ammonia	$\mathrm{NH}_{3(\mathrm{~g})}$	8		1	3 single bonds
Bromine	$\mathrm{Br}_{2(g)}$	14	:Br:Br:	6	1 single bond
Oxygen	$\mathrm{O}_{2(\mathrm{~g})}$		$: \ddot{O}:: \ddot{O}$	4	1 double bond
Hydrogen cyanide (hydrocyanic acid)	HCN	10	H:C:: $\mathrm{N}:$	1	1 single bond 1 triple bond
methane	$\mathrm{CH}_{4(\mathrm{~g})}$	8		0	4 single bonds
Dinitrogen tetrahydride	$\mathrm{N}_{2} \mathrm{H}_{4(\mathrm{~g})}$	14	$\begin{aligned} & \text { H H } \\ & : N: N: \\ & \dot{\mathrm{H}} \mathrm{H}: \end{aligned}$	2	5 single bonds
nitrogen	N_{2}	10	$\ddot{\mathrm{N}}::: \ddot{\mathrm{N}}$	2	1 triple bond
Carbon dioxide	$\mathrm{CO}_{2(\mathrm{~g})}$	16	:O::C::O:	4	2 double bonds
ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	14	$\begin{gathered} \mathrm{H} \mathrm{H} \\ \mathrm{H}: \mathrm{C}: \mathrm{C}: \mathrm{H} \\ \mathrm{H} \mathrm{H} \end{gathered}$	0	7 single bonds
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	$9-1=8$	$\left[{ }^{\text {H }} 0\right.$	1 (or 2 due to 1 coordinate)	2 single 1 coordinate

Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	10	H:C:: C:H	0	2 single 1 triple
Water	$\mathrm{H}_{2} \mathrm{O}$	8	H:O: H	2	2 single bonds
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	14		2	5 single bonds
Nitrate ion	$\left.\mathrm{NO}_{3}{ }^{-} \mathrm{aq}\right)$	$5+18+1=24$	$\left[\begin{array}{c}: O ̈: N: ~ O ̈: ~ \\ : O\end{array}\right]$	8 (or 9 due to 1 coordinate)	
Phosphate ion	$\begin{array}{r} \mathrm{PO}_{4}{ }^{3-} \\ (\mathrm{aq}) \end{array}$	$\begin{gathered} 5+24+3= \\ 32 \end{gathered}$	$\left[\begin{array}{l} : \ddot{Q}: \\ : O:{ }^{\circ}: \\ : O: \end{array}\right.$	$\begin{gathered} 12 \text { (or } 13 \\ \text { due to } 1 \\ \text { coordinate) } \end{gathered}$	3 single 1 coordinate

WORKSHEET 3.6: VSEPR DIAGRAMS

NAME	FORMULA	Total Valence ELECTRONS	ELECTRON Dot Diagram	VSEPR DIAGRAM \& SHAPE(S)
Hydrogen cyanide	$\mathrm{HCN}_{(0)}$	10	H:C: $:$:N:	H-C-N or $\mathrm{H}-\mathrm{C}=\mathrm{N} /$ linear
lodine	$\mathrm{l}_{\text {(s) }}$	14	:":	I-I linear
Carbon dioxide	$\mathrm{CO}_{2(\mathrm{~g})}$	16	Ö : : c: 0	$\begin{gathered} \mathrm{O}-\mathrm{C}-\mathrm{O} \quad \mathrm{OR} \\ \mathrm{O}=\mathrm{C}=\mathrm{O} \text { linear } \end{gathered}$
$\begin{aligned} & \text { Carbonate } \\ & \text { ion } \end{aligned}$	$\mathrm{CO}_{3}{ }^{\text {- }}$	24		$\left(\begin{array}{l} 0 \text { trigonal planar } \\ 0_{0}^{\prime} \\ C=0 \end{array}\right]^{2-}$
Hydronium	$\mathrm{H}_{3} \mathrm{O}^{+}$	8	$\left(\begin{array}{c}\mathrm{H}: \mathrm{OR} \\ \mathrm{H}\end{array} \mathrm{H}^{\text {(}}\right.$	
Carbon Monoxide	CO	10	:C:: 0 :	$\begin{gathered} \hline \text { C - O linear OR } \\ \mathrm{C} \equiv \mathrm{O} \text { linear } \end{gathered}$
Ethyne (acetylene)	$\mathrm{C}_{2} \mathrm{H}_{2}$	10	H:C:: С: H	$\begin{gathered} \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \text { (tetratomic) } \\ \text { linear } \end{gathered}$
ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	20		
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	14	$\begin{gathered} \mathrm{HH} \\ \mathrm{H}: \mathrm{C}: \mathrm{C}: \mathrm{H} \\ \mathrm{H} \mathrm{H} \end{gathered}$	
Ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	24	$\begin{gathered} \mathrm{H}: \mathrm{O}: \\ \mathrm{H}: \mathrm{C}: \mathrm{CB}: \mathrm{O}: \mathrm{H} \\ \mathrm{H} \end{gathered}$	
$\begin{array}{\|c} \hline \text { hydrogen } \\ \text { sulfide } \\ \text { (dihydrogen } \\ \text { sulfide) } \end{array}$	$\mathrm{H}_{2} \mathrm{~S}$	8	H: ${ }_{\text {s̈ }} \mathrm{H}$	$\begin{aligned} & \mathrm{S}-\mathrm{H} \\ & \text { H bent (v shape) } \end{aligned}$
Water	$\mathrm{H}_{2} \mathrm{O}$	8	H:Ö:	$\begin{aligned} & \mathrm{O}-\mathrm{H} \\ & \mathrm{H} \text { bent(v shape) } \end{aligned}$
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	14	$\begin{gathered} \mathrm{H} \\ \mathrm{H}: \mathrm{CZ:O} \\ \text { H: } \\ \text { H } \end{gathered}$	
Nitrite Ion	$\mathrm{NO}_{2}{ }^{-}$	18	$(\mathrm{OBH}: \text { :N̈:Ö: })^{\text {1- }}$	$\binom{Q^{\text {V-shaped (bent) }}}{0^{\prime}}^{1-}$

Phosphate	$\mathrm{PO}_{4}{ }^{\text {3- }}$	32		

Worksheet 3.7: Polarity

1. Water exposed to a positive glass rod bends towards the glass rod. Draw a water molecule
\square
turned in the right position towards the positive glass rod belo. -H
2. Draw the bond dipole using both delta notation \& vector notation for the bonds below. Indicate which has the strongest bond dipole.
$2.6 \quad 3.4$
$4.0 \quad 4.0$
$2.6 \quad 2.2$
a) $\mathrm{S}-\mathrm{O}$
b) $F-F$
c) $\mathrm{C}-\mathrm{H}$
d) $\mathrm{N}-\mathrm{Br}$

no dipole
$\delta^{-} \quad \delta^{+}$
3. Circle the following molecules that are polar. What characteristics helped you determine if they where polar?
hydrogen chloride, hydrogen sulfide, ammonia, methane, hydrogen peroxide
different atoms, bent \& different atoms, pyramidal, tetrahedral, bent
4. Fill in the Table Below. The first one is done for you.

NAME \& Formula	LEWIS DOT Diagram	Structural diagram WITH ELECTRONEGATIVITY	VSEPR Diagram \& Shape(s) WITH OVERALL BOND DIPOLES IF POLAR (ANY NOTATION)	Polar or Nonpolar Molecule
Hydrogen cyanide $H_{C N}^{(I)}$	H:C:: $N:$	$\begin{gathered} 2.12 .5 \\ H-C=N^{3.0} \end{gathered}$	$\xrightarrow{\stackrel{\delta^{+}}{\mathrm{H}_{-}} \mathrm{C-}}$ linear	Polar
Nitrogen, $\mathrm{N}_{2(\mathrm{~g})}$:N:: $\mathrm{N}:$	$\begin{gathered} 3.03 .0 \\ \mathrm{~N} \equiv \mathrm{~N} \end{gathered}$	N-N OR N $=$ N linear	Non polar
Phosphorus trihydride, $\mathrm{PH}_{3(\mathrm{~g})}$	$\begin{gathered} \mathrm{H}: \mathrm{P}: \mathrm{H} \\ \overrightarrow{\mathrm{H}} \end{gathered}$			POLAR
Dibromethane $\mathrm{CH}_{2} \mathrm{Br}_{2(\mathrm{~g})}$				Polar
$\begin{aligned} & \hline \text { Hydronium } \\ & \text { ion } \\ & \mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }} \end{aligned}$	$\binom{\mathrm{H}: \mathrm{O}: \mathrm{H}}{\mathrm{H}}^{1+}$			Polar
$\begin{gathered} \hline \text { carbon } \\ \text { monoxide; CO } \end{gathered}$:C:: $0:$	$2.6 \mathrm{C}=03.4$	$\xrightarrow{\delta^{+} \mathrm{C}-\mathrm{O} \delta^{-} \text {linear }}$	Polar
ethyne $\mathrm{C}_{2} \mathrm{H}_{2}$ acetylene	H:C:: C:H	$\begin{array}{r} \hline \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \\ 2.62 .2 \end{array}$	H-C \equiv C-H linear	nonpolar
$\begin{gathered} \text { ethanol } \\ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \end{gathered}$				polar

ethene $\mathrm{C}_{2} \mathrm{H}_{4}$	$\begin{aligned} & \mathrm{H} H \\ & \mathrm{C}:: \mathrm{C} \\ & \mathrm{CH} \\ & \text { H. } \end{aligned}$		 trigonal planar	nonpolar
$\begin{aligned} & \text { Water } \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \text { H:Ö: } \end{gathered}$			polar

Worksheet 3.8: Bonding Review

1. Complete the following table. (* 1 is strong and 4 is weak)

Chemical Formula \& name	Polarity \& numbe of e-	$\begin{aligned} & \text { Melting } \end{aligned}$ Point	$\begin{array}{\|l} \hline \text { Boiling } \\ \text { Point } \end{array}$	VSEPR Diagram With bond dipoles if polar	Types of Intermolecular Forces	Rank Intermolecular strength*
$\mathrm{F}_{2(\mathrm{~g})}$	nonpolar	-220	-188	F-F	LD	4
$\mathrm{I}_{2(\mathrm{~s})}$	nonpolar 106 e	-7	59	I-I	LD	1
$\mathrm{Cl}_{2(\mathrm{~g})}$	$\begin{aligned} & \text { nonpolar } \\ & 34 \mathrm{e} \end{aligned}$	-114	-184	$\mathrm{Cl}-\mathrm{Cl}$	LD	3
$\mathrm{Br}_{2(1)}$	$\begin{gathered} \text { nonpolar } \\ 70 \mathrm{e} \end{gathered}$	-101	-35	$\mathrm{Br}-\mathrm{Br}$	LD	2
$\mathrm{ICl}_{(\mathrm{g})}$	$\begin{aligned} & \text { polar } \\ & 7 \end{aligned}$	14	97	$\delta+\mathrm{l}-\mathrm{Cl}$ ¢-	LD, DD	1
$\mathrm{BrF}_{(\mathrm{g})}$	$\begin{aligned} & \text { polar } \\ & 44 \mathrm{e} \end{aligned}$	-33	-20	$\delta+\mathrm{Br}-\mathrm{F}$ -	LD, DD	3
$\mathrm{ClF}_{(\mathrm{g})}$	$\begin{aligned} & \text { polar } \\ & 26 \mathrm{e} \end{aligned}$	-154	-101	$\delta+$ Cl-F δ -	LD, DD	4
$\mathrm{BrCl}_{(\mathrm{g})}$	$\begin{aligned} & \text { polar } \\ & 52 \mathrm{e} \end{aligned}$	-66	5	$\delta+\mathrm{Br}-\mathrm{Cl} ~ \delta-$	LD, DD	2
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{OH}_{(1)} \\ & \mathrm{CH}_{3} \mathrm{OH}_{(1)} \end{aligned}$	$\begin{gathered} \hline \text { polar } \\ 18 \mathrm{e} \end{gathered}$	-10	65		LD, DD,HB	1
$\mathrm{CH}_{3} \mathrm{l}_{(1)}$	$\begin{gathered} \text { polar } \\ 62 \mathrm{e} \end{gathered}$	-66	43		LD, DD	2
$\mathrm{CH}_{3} \mathrm{Br}_{(\mathrm{g})}$	polar 44 e	-94	4		LD, DD	3
$\mathrm{CH}_{3} \mathrm{Cl}_{(\mathrm{g})}$	$\begin{gathered} \text { polar } \\ 26 \mathrm{e} \end{gathered}$	-98	-24		LD, DD	4

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}_{(1)}$	$\begin{gathered} \text { polar } \\ 52 \mathrm{e} \end{gathered}$	-119	38		LD, DD	3
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}_{(1)}$	$\begin{gathered} \text { polar } \\ 70 \mathrm{e} \end{gathered}$	-108	72		LD, DD	2
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}$	$\begin{gathered} \hline \text { polar } \\ 26 \mathrm{e} \end{gathered}$	-114	78		LD, DD, HB	1
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}_{(\mathrm{g})}$	$\begin{gathered} \hline \text { polar } \\ 26 \mathrm{e} \end{gathered}$	-138	12		LD, DD, HB	4

2. Rank the following in order of increasing melting point. Give reasons to support your answer.

RANK (1 is low; 8 is high)REASONS(bond type, intermolecular forces, \# of e-)
6 Sodium chloride: 801C Ionic
5 Water: O C Covalent, LD, DD, HB (Water has the strongest HB)
2 Methane: -182C Covalent, LD, 10e
3_ Hydrogen chloride: -114C Covalent, LD, DD
1_ Hydrogen gas: -259C Covalent, LD, 2e
4- Methanol: -98C Covalent, LD, DD, HB
8_ Silicon carbide:2730C Network
7_ Iron metal: 1538C Metalic
3. Use the observations about five solids below to fill in the table that follows.

SOLID	COLOR	ODOR	HARDNESS	OTHER
A	Yellow	Slight	Moderate	Melts over flame
B	White	None	Hard (I or M	Dissolves in water \& conducts electricity
C	White	Strong	Soft	Melts over a flame
D	Grey	None	Very hard	None
E	Silver	None	Hard (I or M	None

Letter, Name \& Formula	Type of Intra-\& Interbonds /forces	Explain how you identified the substances
sodium chloride Formula: $\mathrm{NaCl}_{(\mathrm{s})}$ Letter: B	Ionic \& LD (electronegativity <1.7)	Salt is white color, hard, only one that dissolves in water
silicon carbide Formula: $\underline{\mathrm{SiC}}_{(\mathrm{s})}$ Letter: ㅁ	Network \& LD	Only one that is very hard
iron Formula: $\mathrm{Fe}_{(\mathrm{s})}$ Letter: E	Metallic \& LD	Metals are silver and hard
Sulfur Formula: $\underline{S}_{8(\mathrm{~s})}$ Letter: A	Covalent \& LD	Sulfur is yellow and soft solid; has a rotten egg smell
dichlorobenzene Formula: $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2 \text { (s) }}$ Letter: C	Covalent \& LD, DD	Last one left, soft solid

4. A person is analyzing the five compounds below. Answer the questions that follow. $\mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}, \mathrm{CCl}_{4}$

- Draw the Lewis diagrams
- List the five compounds in order of increasing boiling points.
- List the five compounds from the most non-polar to the most polar compounds

H	H	H	: Cl :	:CI:
H: \ddot{C}				
H	H	:CI:	: Cl :	:CI:

Increasing boiling points: $\mathrm{CH}_{4(\mathrm{LD})}, \mathrm{CCl}_{4(\mathrm{LD}),} \mathrm{CH}_{3} \mathrm{Cl}_{(\mathrm{LD}, \mathrm{DD})}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3(\mathrm{LD}, \mathrm{DD}, \text { most e) }}$ Increasing polarity: $\mathrm{CH}_{4}, \mathrm{CCl}_{4}, \mathrm{CH}_{3} \mathrm{CI}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$ (based on electronegativity difference \& elec)

5．Complete the following table

Formula \＆Name	Lewis Diagram	VSEPR Shape	Polarity	Type of Bonds／Forces	
$\mathrm{NH}_{3(\mathrm{~g})}$ ammonia	$\mathrm{H}: \mathrm{N}: \mathrm{H}$	N．pyramidal HH H	polar	Covalent，LD，DD，HB	
CBr_{4} tetrabromomethane			Non－polar	Covalent，LD	
$\mathrm{H}_{2} \mathrm{~S}$ hydrogen sulfide	$\begin{aligned} & \text { H } \\ & \text { N: } \\ & \hline \text { Si:H } \end{aligned}$	H bent or v shape S－H	polar	Covalent，LD，HB	
PCl_{3}－phosphorus trichloride	：C̈l：P̈：C̈I： ：C！⿱宀㠯 I：	N．pyramidal H H H	polar	Covalent，LD，DD，HB	
BCl_{3}－boron trichloride	:C̃\|:B:CZ	:		Non－polar	Covalent，LD
$\mathrm{NH}_{4}{ }^{+}$－ammonium ion	$(\stackrel{H}{\mathrm{H}}: \stackrel{\mathrm{N}}{\sim} \mathrm{H}$		Non－polar inside（ion outside）	＊Covalent，LD，Ionic	
HBr －hydrogen bromide	H：Br：	H－Br linear	polar	Covalent，LD，DD	
Carbon dioxide－ CO_{2}	Ö：：C：：Ö	$\mathrm{O}=\mathrm{C}=0$ linear	Non－polar	Covalent，LD	
Nitrogen triiodide $-\mathrm{Nl}_{3}$:N: In:	N．pyramidal H H H	polar	Covalent，LD，DD	
$\begin{aligned} & \text { Sulfate ion - } \\ & \mathrm{SO}_{4}{ }^{2-} \end{aligned}$			Non－polar inside（polar outside）	＊Covalent，LD，Ionic	
$\begin{aligned} & \text { Sulfur dibromide - } \\ & \mathrm{SBr}_{2} \end{aligned}$:Br:	$\begin{aligned} & \mathrm{Br} \text { bent } \\ & \text { \| } \\ & \mathrm{S}-\mathrm{Br} \\ & \hline \end{aligned}$	polar	Covalent，LD，DD	
Germanium tetra hydride－ GeH_{4}	$\begin{gathered} \text { H} \\ \text { H:Ğe:H } \\ \text { He } \end{gathered}$		Non－polar	Covalent，LD	
dihydrogen telluride－ $\mathrm{H}_{2} \mathrm{Te}$	$\stackrel{H}{\mathrm{H}}$	H bent or v shape Te－H	polar	Covalent，LD，DD	
nitrogen trifluoride $-\mathrm{NF}_{3}$				Covalent，LD，DD	
dihydrogen selenide－ $\mathrm{H}_{2} \mathrm{Se}$	$\begin{gathered} \text { H } \\ \text { Se:H } \end{gathered}$	H bent or v shape Se－H		Covalent，LD，DD	
Tin（IV）bromide－ SnBr_{4}	$\begin{gathered} {[: B r:]^{-}} \\ {[: B r:]^{-}-[\mathrm{Sn}]^{4+}-[: B r:]^{-1}} \\ \text { [:Br:] } \end{gathered}$	crystar attice	Ions are charged	Ionic	
$\begin{aligned} & \text { Sulfite ion - } \\ & \mathrm{SO}_{3}{ }^{2-} \end{aligned}$			Polar inside the ion	＊Covalent，LD，Ionic	

