BONDING
 Chemistry 20

Reactivity

Most reactive metal: Fr ; Most reactive non-metal: \underline{E}; Halogens react vigorously with alkali metals because they transfer electrons.

Reactivity

Nobel gases are very stable because their orbitals are full Reactivity increases down and to the left for metals and up and to the right for non-metals

	1 ,			Periodic Table									IIIA	IWA	YA	YIA	VIl\|A	$\begin{gathered} 0 \\ \frac{2}{2} \mathrm{He} \end{gathered}$
1	${ }^{1} \mathrm{H}$	\|1.A.																
2	Li	$\begin{array}{\|l\|} \hline 4 \\ \mathrm{Be} \end{array}$		0^{+}		10	1	e	Π	1	6		${ }_{5}^{5}$	${ }^{6} \mathrm{C}$	${ }^{7} \mathrm{~N}$	${ }^{8} 0$	${ }^{9} \mathrm{~F}$	10 Ne
3	$\begin{array}{\|l\|} \hline 11 \\ \mathrm{Na} \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ \mathrm{Hg} \end{array}$	IIIB		$Y \mathrm{~B}$	\%	,		,			IIE	13	$\begin{array}{\|l\|} \hline 14 \\ 5 i \end{array}$	$\begin{gathered} 15 \\ P \end{gathered}$	$\begin{array}{\|c\|} \hline 16 \\ 5 \end{array}$	17 0	$\begin{aligned} & 18 \\ & \mathrm{Ar} \end{aligned}$
4	$\begin{gathered} 19 \\ K \end{gathered}$	$\begin{array}{\|l\|} \hline 20 \\ \mathrm{Ca} \end{array}$	$\begin{aligned} & 21 \\ & 5 c \end{aligned}$	$\begin{gathered} 22 \\ \mathrm{Ti} \end{gathered}$	23	$\begin{aligned} & 24 \\ & 1 \mathrm{Cr} \end{aligned}$	Mn	$\begin{gathered} 26 \\ \mathrm{Fe} \end{gathered}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \end{aligned}$	$\begin{gathered} 28 \\ \mathrm{Ni} \end{gathered}$	$\left\|\begin{array}{c} 29 \\ \mathrm{Cu} \end{array}\right\|$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \mathrm{As} \end{aligned}$	$\begin{aligned} & 34 \\ & 50 \end{aligned}$	$\begin{aligned} & 78 \\ & \mathrm{Br} \end{aligned}$	$\begin{array}{\|l} 36 \\ \mathbf{K r} \end{array}$
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{array}{\|l\|} 38 \\ 5 r \end{array}$	3	$\frac{40}{40}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \end{aligned}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & \hline 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & \text { 45 } \\ & \mathbf{R h} \end{aligned}$	$\begin{aligned} & \text { Pd } \\ & \hline \text { Pd } \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{Cd} \end{aligned}$	$\begin{array}{\|l\|} \hline 49 \\ \text { In } \end{array}$	$\begin{array}{\|c} 50 \\ 5 \mathrm{n} \end{array}$	51	$\begin{aligned} & 52 \\ & \text { Te } \end{aligned}$	$\begin{array}{r} 53 \\ 1 \end{array}$	$\begin{array}{\|c} \hline 54 \\ \mathrm{Xe} \end{array}$
6	$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	Ba	57 * $2 a$	$\begin{gathered} \hline 72 \\ \mathbf{H f} \end{gathered}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{gathered} 74 \\ W \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Re } \end{gathered}$	$\begin{aligned} & \hline 76 \\ & \mathrm{Os} \\ & \hline \end{aligned}$	$\begin{gathered} 77 \\ \hline \mathbf{I F} \end{gathered}$	$\begin{array}{\|c\|} \hline 78 \\ \mathrm{Pt} \end{array}$	$\begin{aligned} & 79 \\ & \text { Au } \end{aligned}$	${ }^{80} \mathrm{Hg}$	$\begin{array}{\|c} 81 \\ \mathrm{TI} \end{array}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{array}{\|c} 83 \\ B i \end{array}$	$\begin{array}{\|l} 84 \\ P_{0} \end{array}$	$\begin{array}{\|l} 85 \\ \text { At } \end{array}$	$\begin{gathered} 86 \\ 8 n \end{gathered}$
7	8	88	$\begin{aligned} & 89 \\ & +A c \end{aligned}$	$\begin{gathered} \hline 104 \\ \hline \mathrm{Rf} \end{gathered}$	$\begin{array}{\|c\|} \hline 105 \\ \mathrm{Ha} \end{array}$	$\begin{array}{\|l\|} \hline 106 \\ \mathrm{Sig} \end{array}$	$\begin{array}{\|l\|} \hline 107 \\ \mathrm{Nss} \end{array}$	$\begin{array}{\|c\|} \hline 108 \\ \mathrm{Hs} \end{array}$	$\begin{gathered} 109 \\ \text { WHt } \end{gathered}$	$\begin{array}{\|l\|} \hline 110 \\ 110 \end{array}$	$\begin{array}{\|l\|} \hline 111 \\ 111 \end{array}$	$\begin{array}{\|l\|} \hline 112 \\ 112 \end{array}$	$\begin{array}{\|l\|} \hline 113 \\ 113 \end{array}$					

* Lanthanide Series	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{gathered} 59 \\ \mathrm{Pr} \end{gathered}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{array}{\|l\|} \hline 61 \\ \mathrm{Pm} \end{array}$	$\begin{aligned} & 62 \\ & 5 \mathrm{~m} \end{aligned}$	Eu	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	65	$\begin{gathered} 66 \\ \mathrm{Dy} \end{gathered}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{gathered} 68 \\ \mathrm{Er} \end{gathered}$	$\begin{aligned} & 69 \\ & \hline \mathrm{Tm} \end{aligned}$	$\stackrel{70}{\mathrm{Yb}}$	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$
+ Actinide Series	90	$\begin{array}{\|l\|} \hline 91 \\ \mathrm{~Pa} \end{array}$	$\begin{array}{\|c} 92 \\ \mathbf{U} \end{array}$	93	$\begin{gathered} 94 \\ \mathrm{Pu} \end{gathered}$	$\begin{array}{\|l\|} \hline 95 \\ \mathrm{Am} \end{array}$	$\begin{array}{\|l\|} \hline 96 \\ \mathrm{Cm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 97 \\ \text { Bk } \end{array}$	$\begin{gathered} 98 \\ \mathrm{Cf} \end{gathered}$	99	$\begin{array}{\|c} 100 \\ \mathrm{Fm} \end{array}$	101 Md	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$	$\begin{gathered} 103 \\ \mathrm{Lr} \end{gathered}$

Bonding

A chemical bond is a net electrostatic attractive force between two atoms, ions, or molecules.

Bonding

Atoms try to achieve electron structures of the nearest Nobel
Gas
Lose energy-forming a bond is exothermic
Gain energy- breaking a bond is endothermic

Bonding

Energy required to break a bond is called the Bond Energy Look at the demo on the next slide.

Ionic Vs. Molecular

solid

any colour varying solubility conductive
ionic bond ions present metal+nonmetal mp above 300C
solid liquid or gas white or colourless varying solubility nonconductive covalent bond no ions present nonmetals only mp below 300C

Bonding

Two main types of bonding forces.
a) intermolecular forces-between
different molecules i.e.) water and salt- Strength depends on size, polarity, \& electrons
b) Intramolecular forces-within molecules i.e.) hydrogen and oxygen in a water molecule

Bonding

Relative Bond Strength(approx.)
STRONG
Intra: Network-Ionic-Metallic-Covalent Inter: hydrogen-dipole dipole-LD forces WEAK
(Watch KhanAcademy.org)

VALENCE ORBITALS \& LEWIS DOT DIAGRAMS

Introduction

Bohr said that electrons exist in energy shells or orbitals.
These shells are regions around the nucleus where you would most likely find the electron.

Aufbau's Principle

Electrons enter the lowest energy level first. Valence electrons are electrons in the highest energy level. Valence orbital: Last energy level

Rule 1) Paul's exclusion Principle

There are four valence shells/suborbitals each with a maximum of two electrons. Hydrogen and Helium are two exceptions with only one shell/suborbital.

Rule 2

A shell/ suborbital can contain 0,1 , or 2 electrons. The repulsion of the 3 electron is too great.

Rule 3: Hund's rule

Single electrons (bonding electrons) occupy each of the four valence shells/ suborbitals before forming electrons pairs (lone pairs).

Rule 4: Octet rule

A maximum of eight electrons can occupy an energy level.
Exception: H \& He only have 2 electrons.
NOTE: This rule only works for the first three energy levels

Electron configurations

1) Shells or suborbitals

- s shell --> 2e
- p shells ($\mathrm{px}, \mathrm{py}, \mathrm{pz}$) --> 6e
\square d shells $-->10 \mathrm{e}$ (transition)
- part of the 4th energy level/not 3rd
- f shells --> 14 e (rare earths)
- part of the 6th and 7th energy level

Lewis Dot Diagrams

Gilbert Lewis (1875-1946)
developed a drawing scheme now called Lewis or electron dot diagrams: A chemical symbol to represent the nucleus and inner energy levels and dots to represent the valence electrons.

Lewis dot diagram rules

1. Write the element symbol to represent the nucleus \& inner energy levels. This is called the kernel of the atom. Ie) Na
2. Place a dot to represent each valence electron. Place one dot on each side of symbol. Ie) $\mathrm{Na} \bullet$
3. If necessary add a second dot to a maximum of 8 (octet rule) ie) : Ne :

Dot diagram rule for ions

4. Remove electrons for cation charge and add electrons for anion charge. Enclose ions in square brackets with charge on outside.
Ie) $[\mathrm{Na}]+\quad[: \ddot{\mathrm{Cl}}:]-$
Dot Diagram Añimation

Example \#1

Atom or Ion: \# of valence electrons: Electron Dot diagram:
Ca^{2+} (8e-) 0 $[\mathrm{Ca}]^{2+}$
\# of bonding electrons: \# of lone pairs:

Example \#2

Atom or Ion: \# of valence electrons:

2eElectron Dot diagram:

$$
\cdot \mathrm{Ca} \cdot
$$

[Ar$] 4 \mathrm{~s}^{2}$
lewis 20 Ca.pic
\# of bonding electrons:
\# of lone pairs:

Example \#3

Atom or Ion: \# of valence electrons:

3eElectron Dot diagram:

Ga

- Ga•
[Ar] 3d $104 s^{2} 4 p^{1}$ lewis 31 Ga.pic

\# of bonding electrons: \# of lone pairs:

Example \#4

Atom or Ion: \# of valence electrons: Electron Dot diagram:

1e-

K•
[Ar] 4s ${ }^{1}$
lewis 19 K.pic
\# of bonding electrons: \# of lone pairs:

Example \#5

Atom or Ion:
\# of valence electrons: 6e-

S

 Electron Dot diagram:
[Ne] 3s ${ }^{2} 3 \mathrm{p}^{4}$
\# of bonding electrons: $\stackrel{\text { Lems } 16 \text { s.pic }}{2}$
\# of lone pairs:

Example \#6

Atom or Ion: \# of valence electrons:

5eElectron Dot diagram:

[He] $2 s^{2} 2 p^{3}$ lewis 7 N .pic
\# of bonding electrons: \# of lone pairs:

1

Example \#7

Atom or Ion: Al \# of valence electrons: 3eElectron Dot diagram:

13 - AI.

\# of bonding electrons:
[Ne$]_{3 s^{2}}{ }^{\mathbf{3 p}}{ }^{1}$ lewis 13 Al.pic \# of lone pairs:

Example \#8

Atom or Ion: \# of valence electrons:

8eElectron Dot diagram:

[He] $2 s^{2} 2 p^{6}$ lewis 10 Ne.pic
\# of bonding electrons: \# of lone pairs:

Example \#9

Atom or Ion: \# of valence electrons: Electron Dot diagram:

F-
8e-
[:F:] ${ }^{-}$
\# of bonding electrons:
0 \# of lone pairs:

4

Example \#10

Atom or Ion: \# of valence electrons: 7eElectron Dot diagram:
 \# of lone pairs:

Example \#11

Atom or Ion: \# of valence electrons: Electron Dot diagram:
\# of bonding electrons: \# of lone pairs:

Incorrect Lewis Dot diagrams

Correct Lewis Dot diagrams

:C: :P:
-B: :Na:

- P
: $:$

Corrections:

6
[He $22 s^{2} 2 p^{2}$
lewis 6 C .pic

15
$\bullet \bullet$

5
[He] 2s² 2p1
lewis 5B.pic

11
[Ne] 3s1
lewis 11 Na.pic

15	16
- \bullet	$\bullet 0$
-	\bullet
[Ne] $3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$	[Ne] 3s ${ }^{2} 3 \mathrm{p}^{4}$
lewis 15P.pic	lewis 16 S .pic

Lewis Diagrams for Molecular

1) Sum the valence electrons for all the atoms in the molecule. Only this number of electrons can be used.
2) Determine which atom can form the most number of bonds this is the central atom.

Lewis Diagrams for Molecular

3) Remember valence electrons obey the octet rule - except H.
Examples: $\mathrm{Cl}_{2}-14$ val e- $: \stackrel{\circ}{\mathrm{C} 1} \cdot \stackrel{\bullet}{C} \mathrm{l}$:
H
$\mathrm{CH}_{4}-8$ val e- $\mathrm{H}: \mathrm{C}: \mathrm{H}$ H

Example

Lewis diagrams for multiple bonds

\square Double covalent bonds have two pairs of electrons shared.
\square Triple covalent bonds have three pairs of electrons shared.

Examples of double/triple bond

Double:
O2 - 12 e- : $\ddot{: Q}: \ddot{\mathrm{O}}: \quad: \mathrm{Q}:: \ddot{\mathrm{O}}:$
CO_{2}
Triple:
$\mathrm{N}_{2}-10 \mathrm{e}-\quad: \mathrm{N}::: \mathrm{N}:$

Lewis diagrams for Ionic

- Electrons are transfered
\square Electrons around the metal are lost
■ Charges ions are enclosed in brackets.

Examples of Ionic Lewis

$\mathrm{NaCl} \quad[\mathrm{Na}]^{+}[: \ddot{\mathrm{C}} \mathrm{l}:]^{-}$
$\mathrm{K}_{2} \mathrm{~S} \quad[\mathrm{~K}]^{+}[: \ddot{\mathrm{S}}:]^{2-}[\mathrm{K}]^{+}$
Animation

Lewis diagrams for Complex Ions

\square Sum the valence electrons for all the atoms in the molecule.
\square Add electrons for negative charges and subtract for positive charges
\square Arrange the electrons around the atom so the sum is achieved and octet rule followed (hit and miss)

Examples of Complex Ions

Cyanide - CN- (10e-) $=[: \mathrm{C}:: \% \mathrm{~N}:]^{-}$
Sulpate-SO ${ }^{2-(32 e-) ~}: .0:$
Sulphate- $\mathrm{SO}_{4}{ }^{2-(32 e-)}[: \ddot{\mathrm{O}}: \ddot{S}: \ddot{\mathrm{O}}:]^{2-}$:Q:

Ammonium $-\mathrm{NH}_{4}^{+}(8 \mathrm{e}-)$
[H:N:H]+ H

IONIC BONDING

A. Review

Ions: atom or group of atoms with a positive or negative charge Metallic Ions: cation with positive charge (low electronegativity)
Non-metallic Ions: anion with negative charge
(high electronegativity)

Ionic Bond

- Ionic Bond: net electrostatic attraction between cation and anion
\square Ionic bonds produce a crystal lattice with a repeating pattern
\square Ionic compound char

(look at the beginning of your notes)

Formula Unit

Formula Unit: the lowest whole number ratio of ions in an ionic compound. ie) NaCl - ratio is 1 to 1 ; In reality there is a lot more than 1 sodium or 1 ch

Dot diagrams

Electron Dot Diagrams
$2 \mathrm{Na}+\mathrm{Cl}_{2}-----\gg 2[\mathrm{Na}]+[: \ddot{\mathrm{C}} \mathrm{l}:]^{-}$ (brackets show that they are not sharing but transfering)

Oxidation-Reduction

Oxidation - Reduction: (LEO goes GER - Losing Electron Oxidation, Gaining Electrons Reduction) (OIL RIG Oxidation Is Losing, Reduction Is Gaining)

Oxidation - Reduction

Oxidation: loss of electrons(metal)
(The lower the electronegativity, the easier it is oxidized.)
ie) $\mathrm{Na}(\mathrm{s})=>\mathrm{Na}^{+}+1 \mathrm{e}^{-}$
Reduction: gaining of electrons
(non metal)
ie) $\mathrm{Cl}_{2}+2 \mathrm{e}^{-}=>2 \mathrm{Cl}^{-}$

Ionic Crystals

csclvsnacl.mov

METALLIC BONDING

Definition

Metal: a network of very loosely bound valence electrons around fixed positively charged metal ions

Properties

positive ions are momentarily formed(ionic) while electrons are shared(covalent)
Great conductors of heat and electricity(electrons free to move)

Diagram

NETWORK COVALENT

Definition

A netroork of covalent bonds between group Si \& C (group 14) where electrons do not move freely.

Properties

Hardest inflexible bond known

High melting point - diamonds vaporize at 3500 C .

COVALENT BONDS

Introduction

Summary: occur between non metals by sharing of electrons
Form an octet. Can be single, double, or triple bonds

Bonding Capacity

Bonding Capacity: The

 maximum number of bonds an atom can form. Bonds can be represented by dashes.
Hydrogen

Atom
\# of valence \# of bonding

1
Bonding Cap 1 H-(one single)

Carbon

Atom \# of valence 4 \# of bonding 4 Bonding cap $\quad 4^{-} \mathrm{C}=$ (triple single)
$=\mathrm{C}=$ (2 doubles) $\quad-\mathrm{C}-(4$ singles $)$
$-\mathrm{C}=$ (double 2 singles)

Nitrogen

Atom N \# of valence 5 \# of bonding 3
Bonding cap $3 \mathrm{~N} \equiv$ (1 triple)
$-\mathrm{N}=$ (one double, 1 single)
-N- (3 singles)

Oxygen

Atom
\# of valence
\# of bonding
Bonding cap

O
6
2
$2 \mathrm{O}=$ (1 double) -O- (2 singles)

Fluorine

$$
\begin{array}{lll}
\text { Atom } & \text { F } & \\
\text { \# of valence } & 7 & \\
\text { \# of bonding } & 1 & \\
\text { Bonding cap } & 1 & \text { F- (1 single })
\end{array}
$$

Neon

$$
\begin{array}{lc}
\text { Atom } & \text { Ne } \\
\text { \# of valence } & 8 \\
\text { \# of bonding } & 0 \\
\text { Bonding cap } & 0 \\
\text { NO BONDS }= & \text { INERT }
\end{array}
$$

Structural Diagrams

Replace the shared pairs with a line (bond) and erase the lone pairs
Molecular formula: written with symbols only

Diatomic

Molecular Cl_{2} Lewis :̈Cl:Cl:

Stuctural: $\mathrm{Cl}-\mathrm{Cl}$

One/two lone pair

$$
\begin{array}{lcc}
\text { Molecular } & \mathrm{NH}_{3} & \mathrm{H}_{2} \mathrm{O} \\
& \text { Lewis } & \mathrm{H}: \stackrel{\mathrm{N}: \mathrm{H}}{ } \\
\mathrm{H}: O ̈ \mathrm{O} \\
& \stackrel{H}{4} \\
\text { Structural } & \mathrm{H}-\mathrm{N}-\mathrm{H} & \mathrm{H}-\mathrm{Q} \\
& \mathrm{H} & \mathrm{H}
\end{array}
$$

Double Bonds

Molecular Lewis
O_{2}. O:O

Structural $\mathrm{O}=\mathrm{O}$

Triple Bonds

Molecular
 N_{2}
 Lewis :N::N:
 Structural $\quad \mathrm{N}=\mathrm{N}$

cyclic carbon compounds

Molecular cyclohexane $\mathrm{C}_{6} \mathrm{H}_{12}$ H

Lewis: \quad C :

$$
\begin{gathered}
\mathrm{H}: \mathrm{C}: \mathrm{H} \\
\mathrm{H}: \stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H} \text { H:C:H H:C:H } \\
: \ddot{C} \quad .
\end{gathered}
$$

$\stackrel{C}{C}$
Structural: H

Lewis Problems

1) Coordinate covalent bonds: one atom supplies both electrons (lone pair) to form a covalent bond.

Examples

a) carbon monoxide

Molecular: CO-10 eLewis: .C. O: => C::O: => :C: : $:$:
Structural: $\mathrm{C}=\mathrm{O}$
coordinate covalent bond

Examples

ammonium ion Formula: $\mathrm{NH}_{4}{ }^{+}(8 \mathrm{e})$ [Lewis:

Structural: $\left[\begin{array}{c}\mathrm{H}-\mathrm{N}-\mathrm{H} \\ \mathrm{H}\end{array}\right] \begin{gathered}\mathrm{H} \\ \text { coordinate } \\ \text { covalent bond }\end{gathered}$

hydroxide ion Formula: $\mathrm{H}_{3} \mathrm{O}^{+}(8 \mathrm{e})$
 Lewis:
 $\left[\begin{array}{c}\mathrm{H}: \mathrm{O}: \mathrm{H}\end{array}\right]^{+}$

Structural $\left[\begin{array}{c}\mathrm{H} \\ \mathrm{H}-\mathrm{O}-\mathrm{H}\end{array}\right]^{+} \begin{aligned} & \text { coordinate } \\ & \text { covalent } \\ & \text { bond }\end{aligned}$

Problems with Lewis con't

Resonance: when two or more electron dot diagrams can be written
Hybrid: single diagram that combines the resonance's.

Examples

a) Ozone . $\mathrm{O}_{3(\mathrm{~g}) \text {. }} 18$ e-.

Lewis: $\ddot{\mathrm{O}}:: \mathrm{O}: \stackrel{\mathrm{Q}}{\mathrm{Q}}:$ or $: \ddot{\mathrm{O}}: \mathrm{Q}:: \ddot{\mathrm{O}}$
Structural: $\mathrm{O}=\mathrm{O}-\mathrm{O}$ or $\mathrm{O}-\mathrm{O}=\mathrm{O}$
Hybrid:

$$
\begin{aligned}
& \mathrm{O}=\mathrm{O}=\mathrm{O} \\
& 1.5 \text { bond }
\end{aligned}
$$

Examples

acetate ion $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)-24 \mathrm{e}$

$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$, Acetate ion resonance structures

Examples

carbonate ion $\mathrm{CO}_{3}{ }^{2-}-24 \mathrm{e}$

CO_{3}^{2-}, Carbonate ion resonance structures

More problems with Lewis

Exceptions to the octet rule

- More or less than 8 electrons
-P, S \& Se can have 10 or 12 electrons around the atoms
-Be \& B can have 4 or 6 electrons around their atoms
\square Less than than 2 electrons $-\mathrm{NO}_{2}$

Examples

nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$
 $\cdot \mathrm{N}=\mathbf{0}$
 NO

resonance-NO2.pic

Summary

Lewis diagrams tell us:

1) electrons involved with bonding
2) type \& number of bonds

Lewis diagrams do not tell us: 1) what an atom looks like (ieinner energy levels)
2) where the electrons are (ierandom location

Summary

\square Bonds are formed by sharing of electrons
\square Two electrons are involved in each covalent bond

- diagrams and formulas
usually satisfy the octet rule

VSEPR THEORY

Stereochemistry

the study of the molecular shapes VESPR: The theory of ValenceShell Electron-Pair Repulsion used to predict molecular shapes

VESPR

Assumptions:

- all molecules have a 3-D shape
- number of valence electrons, number of bonding electrons and the central must be known to determine the shape

VSEPR

\square Electron pairs repel each other; they try to get the maximum distance from each other
\square lone pairs repel each other more than the bonding pairs of electrons

VSEPR Rules

1) DRAW Covalent bonds in the

 same plane with solid lines (-); covalent bonds between atoms behind the paper with dotted lines(--); covalent bonds in front of the paper with a wedge (
)
Rules

2)
3) Minimize the bonds in front and behind the central atom

Shapes

1) Tetrahedral: 4 bonding pairs, 0 lone pairs, single bonds, group 14

properties: non-polar if pendant atoms are all the same; 109.5^{0}

Shapes

2) Pyramidal: 3 bonding pairs, 1 lone pairs, single bonds, group 15
i.e.) NH_{3}

properties: always polar; 120° bond angle

Shapes

3) V shaped(bent): 2 bonding pairs, 2 lone pairs , single bonds, group 16 i.e.) $\mathrm{H}_{2} \mathrm{O}$

properties: polar 104.5^{0}

Shapes

4) Trigonal planer: 4 bonding pairs, 1 double bond, group 14 central atom
i.e.) $\mathrm{C}_{2} \mathrm{H}_{4}$

2 trigonals
properties: nonpolar if pendant atoms are the same; 120°

Shapes

4) Trigonal planer: 3 bonding pairs, 0 lone pairs around atom(group 13)

properties: non polar if pendant atoms are the same; 120^{0}

SHAPES

5) Linear- (diatomic): 1 bonding pair, 0 or 3 lone pairs around the atom
i.e.) $\mathrm{HCl} \mathrm{H}--\mathrm{Cl}$ - polar $\mathrm{Cl}_{2} \mathrm{Cl}--\mathrm{Cl}$ - non polar

Even more Shapes

5) Linear-tetratomic: 4 bonding pairs, 1 triple bond around the atom (group 14 atoms)
ie) $\mathrm{C}_{2} \mathrm{H}_{4} \quad \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
properties: non polar if pendant atoms are all the same.

More Shapes

Linear-(triatomic): 4 bonding pairs,
 2 double bonds around the atom (group 14 atoms)
 i.e.) $\mathrm{CO}_{2} \quad \mathrm{O}=\mathrm{C}=\mathrm{O}$
 properties: usually non polar

Still More Shapes

6) Combinations:
i.e.) $\mathrm{CH}_{3} \mathrm{OH}$

V shaped and tetrahedral

7) Others:

a) Trigonal bipyramidal $-\mathrm{PCl}_{5}$
b) octahedral - SF_{6}
c) pentagonal bipyramidal $-\mathrm{IF}_{7}$

Electronegativity

Electronegativity

measure of an atoms attraction for electrons (number on your periodic table from 0 to 4.0)

Principles by Linus Pauling

1. As you go left and down the metals electrons are held more loosely. Therefore the element loses electrons and the electronegativity decreases. LEFT- LOW- LOOSE

Pauling's Principles

2. As you go right and up the nonmetals are held more tightly. Therefore the element gains electrons and the electronegativity increases. RIGHT-HIGH-TIGHT

Pauling's Principles

3. Noble Gas Exception: they
hold their electrons most tightly but have no electronegativity because they have an octet (stable)

Electronegativity and Bond Type

2. If the electronegative difference between two atoms is equal to or greater than 1.7, the bond is usually ionic.

Electronegativity and Bond Type

2. If the electronegative difference between two atoms is than 1.7, the bond is usually polar covalent.

Electronegativity and Bond Type

2. If the electronegative difference between two atoms is than 0 , the bond is usually non-polar coroalent or metallic.

Electronegativity and Polarity

1. polar covalent bond: a bond that forms from the unequal sharing of bonding electrons.

Electronegativity and Polarity

2. polar molecules \& dipoles. Polar molecule: a molecule that has a slightly uneven charge distribution, with charged regions.

Electric poles

Charged regions represented by delta signs

Bond Dipole

When one end of a bond is positively charged and one end is negativly charged due to the differing electronegativities of the atoms sharing the electrons

Drawing bond dipoles

Step 1) Determine the electronegative difference by subtracting the electronegativities and looking at VESPR diagrams.

Step 2)

Use Delta signs to indicate small charged regions. (not ionic)

Step 3)

Draw a dipole with an arrow over the top the molecule, with the tip of the tip pointing towards the negative pole ---->
$\mathrm{H}-\mathrm{Cl}$

dipoleHF.pic

Non polar covalent Bond

Bond that forms from the equal sharing of bonding electrons. (electro cancel)

$$
\begin{array}{rrr}
3.03 .0 & 3.5 & 3.5 \\
\text { ie) } \mathrm{Cl}_{2}: \mathrm{Cl}-\mathrm{Cl} & \mathrm{CO}_{2}: \mathrm{O}=\mathrm{C}=\mathrm{O}
\end{array}
$$

dipoleCO2.pic

netdipolefff.pic

netdipoleffh.pic

dipoleCCI4.pic

dipoleCHCl3.pic

Conclusion

Polarity is based on the net electronegativity and the shape of the compound
bondingofwater2.mov and bendingofwater.mov

INTERMOLECULAR FORCES

Intermolecular Bonding

The size of the molecules and the polarity determine the strength of intermolecular forces

Intermolecular forces

Electron and nuclear attractions between molecules cause intermolecular bonding

Intermolecular Forces

Intermolecular forces affect properties like solubility, melting point, boiling point etc....
REMEMBER: polar substances dissolve polar substances

Intermolecular Forces

Overview of types of forces
I) 2 Van der Waal forces

1. London Dispersion (all atoms)
2. dipoledipole
II) Hydrogen forces (bonds)

London Dispersion

I) The first 2 are called Van der Waal 1) London Dispersion (LD)
(temporary dipoles): The electrostatic attraction between all molecules
due to temporary dipoles (the
temporary formation of polar regions)
These are the weakest
intermolecular forces

LD - Forces

LD forces hold molecules together when they are in solid and liquid states. The diatomic gases have very weak LD forces, while iodine has stronger LD forces. (solid at 25C)

LD Forces

The larger the atom, the stronger the LD forces, because there are more electrons - more temporary poles. In LD forces there is no net shift of electrons, there LD forces are not permanent and the molecule is still nompolar

LD Forces

LD forces are stronger the larger the atom because there are more electrons - more temporary poles.
In LD forces there are no net shift of electrons, therefore LD forces are not permanent and the molecule is still nonpolar

LD Forces

If two molecules have the same number electrons they are called isoelectronic
ie) Ar and HCl are isoelectronic because they both have 18e-. HCl has a higher boiling point because of dipole dipole forces.

Examples

The dotted lines represent the

 forces
LD forces

Boiling point: are indirect measurement of Van der Waal' s forces. The more electrons the higher the force.

dipole dipole

2) dipole dipole (DD): electrostatic attraction between two polar molecules

Examples

Examples of dipole dipole force The dotted lines represent the forces

Hydrogen Forces (bonds)

Special, relatively strong
dipole dipole forces between H of one molecule and O, F and N of another molecule

H - Bonds

These bonds form because of the electrostatic attraction between hydrogen \& N, O or F.

H - Bonds

The small size of the hydrogen atom means it has a strong exposed positive nucleus and this positive pole exerts a stron attraction to the negative pole of a nearby molecule.

H - Bonds

V - shaped molecules with hydrogen bonds, like water, have stronger hydrogen bonds than any other molecule, like ethanol.

H- Bonds

This is because they are smaller - easy access to the hydrogen. Water, hydrogen fluoride and ammonia have very strong hydrogen bonds.

Examples

H-F---H-F hydrogen bonds are

 represented by the dotted lins because they are between different molecules.
Examples

$\begin{array}{cr}\mathrm{H}-\mathrm{O}--\mathrm{H}-\mathrm{O} \\ \mathrm{H} & \mathrm{H}\end{array}$

NOTE: There are lots of hydrogen bonds that can form because water is small and has two hydrogens to bond with

Ethanol Example

Physical Properties

1) The melting point and boiling point (temperature) increase as the inter molecular forces increase due to increased energy that is needed to break the intermolecular bonds

Intermolecular Forces Physical Properties
To determine mp, need to look at a) Type of forces involved Relative Strengh Scale LD DD HB Ionic Network 15

10 50 100
metallic mp may vary from $-39(\mathrm{Hg})$ to3410(W) but are generally weaker than ionic

Determining mp

b) Number of electrons - the more electrons, the greater the intermolecular forces.
Exceptions: water, hydrogen fluoride and ammonia because of the strong H - Bonds.

determining mp

c) Number and strength of the intermolceular forces involved (LD, DD, HB) - the more forces involved the higher the melting point.

Physical properties

To determine melting point you need to look at

1) Number \& type of intermolecular forces (water has the highest HB)
2) Number of total electrons (more = high LD forces)

Determining Strengh

Comp \# ofe mp bp Force $\mathrm{H}_{2} \mathrm{O} \quad 10 \quad 0 \quad 100 \mathrm{H}, \mathrm{DD}, \mathrm{LD}$ $\mathrm{H}_{2} \mathrm{~S} \quad 18 \quad-85.5-60.7$ DD,LD $\mathrm{H}_{2} \mathrm{Se} 36-60.4-41.5$ DD,LD $\mathrm{H}_{2} \mathrm{Te} \quad 54 \quad-48.9$-2.2 DD,LD

2) SOLUBILITY

LIKE DISOLVES LIKE

Increased solubility occurs between substances that are both polar (have dipole dipole forces or hydrogen bonds)
3) Shape and Stability of some substances

Expansion of liquid water upon freezing. When water changes to ice, hydrogen bonds leave hexagonal holes making ice less dense than liquid water.

