

Worksheets

Worksheet 1.1: Atomic Structure

1. Complete the following table. Using symbols, provide an example of each category using the element provided. For the average atom assume that the mass number is the atomic mass rounded off. The first one is done. (8 marks) (1/2 mark off for each mistake in each row).

	Average Atom	Monoatomic Polyatomic or diatomic element	<u>Most</u> <u>common</u> <u>simple Ion</u>	Complex or polyatomic Ion	Isotope of the average	Ionic compound	Molecular compound	Acid compound
chromium	⁵² Cr	Cr	Cr ³⁺	$\operatorname{CrO_4}^{2-}$	⁵³ Cr	Cr ₂ O ₃	NONE	NONE
sulphur	³² S	S _{8(s)}	S ²⁻	SO ₄ ²⁻ or SO ₃ ²⁻	³³ S	Na ₂ S _(aq)	SO _{2(g)}	$\begin{array}{l} H_2SO_{4(aq)} \\ H_2SO_{3(aq)} \end{array}$
nitrogen	¹⁴ N	N _{2(g)}	N ³⁻	NO ₃ ⁻ or NO ₂ ⁻	¹³ N	Na ₃ N _(aq)	NO _{2(g)}	HNO _{3(aq)} HNO _{2(aq)}

 Complete the following table. Note that the mass number can change for isotopes. If there is not a noble gas with the same # of electrons, than put NONE. The first one is done.(6 marks) (1/2 mark off for each mistake in each row)

Atom or Ion name	Atom or ion symbol	Atomic number	Mass number	Protons	Electrons	Neutrons	Noble Gas with same # of electrons
sodium ion	²³ Na⁺	11	23	11	10	12	neon
aluminum atom	²⁸ AI	13	28	13	13	15	neon
chloride ion	Cl ¹⁻	17	34	17	18	17	argon

Worksheet 1.2: Compounds

Complete the following table (Assume water is used with ionic compounds): (16 marks)

I = M (NH ₄) + N M = non metals A = H (acid) pg 8/9 in databook	chemical formula(add states)	chemical name
Ionic	K ₂ SO _{3(aq)}	Metal name + polyatomic name potassium sulfite
ACID	H ₂ SO _{4(aq)}	sulphuric acid
IONIC	$Na_2S_2O_3 \bullet 1 H_2O_{(s)}$	sodium thiosulfate monohydrate
MOLECULAR	C ₂ H ₅ OH(I)	ethanol
IONIC	$Pb^{2+/4+}(SO_4)^{2-}_{2 (aq)}$	lead (IV) sulphate
MOLECULAR	P ₅ O _{10 (g)}	Pentaphosphorus dexaoxide
MOLECULAR	C ₁₂ H ₂₂ O ₁₁ (s)	sucrose
IONIC	Na₂SIO₃(aq)	sodium silicate
MOLECULAR	NH ₃ (g)	Ammonia is not ammonium

MOLECULAR (NOT AN ACID)	H ₂ O ₂₍₁₎	Hydrogen peroxide
MOLECULAR	SO_{3} (g) does not equal $SO_{3}^{2^{-}}$ (aq)	Sulfur trioxide (NOT sulfite)
IONIC (NH4+ is an ion)	(NH ₄) ₃ PO _{4 (aq)}	ammonium phosphate
IONIC	Cu ²⁺ SO ₄ ²⁻ CuSO ₄ * 5H ₂ O(s)	copper (II) sulphate pentahydrate
MOLECULAR (MEMORIZED)	C ₃ H ₈ (g)	propane
ACID	CH₃COOH(aq)	ethanoic acid
MOLECULAR	O _{3(g)}	OZONE
MOLECULAR	HOH _(g,l,s)	water

Worksheet 1.3: Reactions

Complete the following reactions, identify the reaction type and balance the equation.(3 marks each; 15 marks total)

- mercury (II) oxide is broken down into its elements by heating. Hg²⁺ O²⁻ (Always balance the charges on IONIC compounds)
 2 HgO (s) → 2 Hg(I) + O_{2(g)} Decomposition
 a nickel strip is placed in a gold (III) sulfate solution COMMON MISTAKES Ni²⁺ (aq) + Au₃S₈ →
 Ni(s) + Au₂(SO₄)_{3(aq)} → Au_(s) + (Ni ^{2#/3+}SO4 ²⁻) NiSO_{4(aq)} 3 Ni(s) + Au₂(SO₄)_{3(aq)} → 2 Au(s) + 3 NiSO₄(aq) single replacement
- 3) phosphoric acid reacts with iron (III) oxide. $\frac{2}{2} H_3 PO_{4(aq)} + Fe_2O_{3(s)} \rightarrow \frac{2}{2} FePO_{4(s)} + \frac{3}{2} H_2O_{(I)} Double Replacement$

H = 3 6	H =2 x 2
O = 3	0 = 1 3
$PO_4 = 1 \times 2$	PO ₄ = 1 -2
Fe = 2	Fe = 1 x 2

 4) butane is burned in air (Balance C's first, H's second and O's last) C₄H_{10(g)} + 6.5 O_{2(g)} →4CO_{2(g)} +5 H₂O_(g) 2? = 8 + 5; ? = 6.5

OR 2 $C_4H_{10(g)}$ + 13 $O_{2(g)} \rightarrow 8CO_{2(g)}$ +10 $H_2O_{(g)}$ Another Combustion question for practice DECANE: $C_{10}H_{22(l)}$ + 15.5 $O_{2(g)} \rightarrow 10CO_{2(g)}$ +11 $H_2O_{(g)}$

5) sulfur combines with oxygen to from sulfur trioxide $S_{8(s)} + \frac{12}{12} O_{2(g)} \rightarrow \frac{8}{3}SO_{3(g)}$ Formation

(NOTE: Sulfur is a polyatomic element)

Worksheet 1.4: Mole Problems

a. What is the molar mass of chlorine gas? Cl x 2 = 35.45 x 2 = 70.90 g/mol b. What is the molar mass of hydrogen peroxide? H_2O_2 Hx 2 = 1.01 x 2 = 2.02 O x2 = 16.00 x 2= 32.00= <mark>34.02 g/mol</mark> Total c. What is the molar mass of lead (II) nitrate? $Pb(NO_3)_2$ Pb x1 = 207.2 N x 2 = 14.01 x 2 = 28.02 $O \times 6 = 16.00 \times 6 = 96.00$ TOTAL = <mark>231.22 g/mol</mark> PARTICLE(Formula Units/Molecules) TO MOLE CALCULATIONS: 2. a. How many moles in 6.55 x 10^{19} atoms of zinc? Step 1) n=?; p = 6.55E19 atoms; P = 6.02E23 atoms/mol Step 2) n = p/PStep 3) n = 6.55E19 atoms / 6.02E23 atoms/mol Step 4) n = 0.0001088039... mol; 0.000109 mol or 1.09 x10⁻⁴ mol or 0.109 mmol or 109 umol b. How many formula units in 3.99 mol of potassium carbonate? Step 1) p=?; n = 3.99mol; P = 6.02 E23 formula units/mol Step 2) $p = n \times P$ Step 3) p = 3.99mol x 6.02E23 formula units/mol Step 4) p = 2.40198 E24 formula units; 2.40E24 formula units or 2.40 X10²⁴ formula units c. How many molecules in 2.00 mol of sulphur dioxide? Step 1 - 3) p=nP; p=2.00 mol x 6.02E23 molecules/mol Step 4) p= 1.20E24 molecules of sulphur dioxide d. How many moles in 4.5 x 10²⁴ atoms of chlorine? Steps 1-3) n=p/P; p=4.5E24 atoms / 6.02E23 atoms/mol Step 4) n= 7.5 mol of chlorine 3. MASS TO MOLE CALCULATIONS: a. How many moles in 30.6 g of copper? Step 1) n=?; m = 30.6g; M_{Cu} = 63.55g/mol Step 2) n = m/MStep 3) n = 30.6g/63.55g/mol Step 4) n = 0.481510... mol; 0.482 mol or 482 mmol (3 significant digits; divide by E-3 to get mmol) b. What is the mass of 2.3 mol of carbon dioxide? Step 1) m=?; n = 2.3mol; M_{CO2} = 44.01g/mol C = 12.01Step 2) m = nMO₂=32.00 Step 3) n = 2.3mol x 44.01g/mol M = 44.01 g/molStep 4) n = 101.22... g; 1.0 x 10² g or 0.10 kg c. Determine the mass in 56.3 mmol of ethanol? Step 1) m=?; n = 56.3mmol; M_{C2H5OH} = 46.08g/mol $C_2 = 24.02$ Step 2) m = nM $H_6 = 6.06$ Step 3) n = 56.3E-3mol / 46.08 g/mol O =16.00 Step 4) n = 0.001221... g; 0.00122g or 1.22 mg M=46.08g/mol d. How many moles in 56.6 kg of iron (II) oxide ore? Step 1) n=?; m = 30.6q; M_{Cu} = 63.55q/mol Step 2) n = m/MStep 3) n = 30.6g/63.55g/mol

1.

MOLAR MASS QUESTIONS

4. VOLUME TO MOLE CALCULATIONS:

```
a. Determine the number of moles in 33.6 L of methane at STP?
```

- Step 1) n=?; v = 33.6L; V = 22.4L/mol
- **Step 2) n = v/V**

```
Step 3) n = 33.6g/22.4L/mol
```

```
Step 4) n = 1.50 mol (3 significant digits)
```

```
b. What volume of gas would be present in 0.955 mol at SATP?
```

```
Step 1) v=?; n = 0.955 mol; V = 22.4L/mol
```

```
Step 2) v =nV
```

Step 3)v = 0.955mol x 24.8L/mol (v = 0.955mol x 22.4 L/mol (STP))

```
Step 4) v = 23.684; 23.7 L of gas at SATP; (v = 21.392 L; 21.4 L of gas at STP)
```

- c. How many moles in 100 mL of carbon dioxide at SATP?
- Step 1) n=?; v = 100mL OR 0.100 L; V = 24.8L/mol
- Step 2) n = v/V
- Step 3) n = 0.100 L / 24.8 L/mol
- Step 4) n = 0.004032258... mol; 0.00403 mol or 4.03 x 10⁻³ mol or 4.03 mmol
 - d. What volume of nitrogen monoxide would be present in 2.7 mol if the temperature is 25C and the pressure is 100 kPa?
- Step 1) v=?; n = 2.7 mol; V = 24.8L/mol (SATP conditions)
- Step 2) v = nV
- Step 3) v = 2.7 mol x 24.8L/mol
- Step 4) v = 66.96 L; 67 L (2 significant digits)

5. What is the mass of 2.3 mol of carbon dioxide at STP?
Step 1) n=?; m = 30.6g; M = C = 12.01 x 1 = 12.01 O = 16.00 x 2 = 32.00 TOTAL = 48.01g/mol
Step 2) m = nM
Step 3) m = 2.3mol x 48.01g/mol
Step 4) m =110.423 g; 1.1 x10² g or 0.11 kg (divide by E3 to change to kmol)
NOTE: You have to change to scientific notation since you need 2 sig digs and 100 has 3.

Worksheet 1.5: More difficult mole problems

- How many atoms of copper are in 0.088 mol of copper (I) oxide? 1. p=nP; p=0.088 mol x 6.02E23 molecules/mol p= 5.2976E22 molecules of Cu₂O Cu₂O; p_{cu}= 2 x = 1.059E23; 1.1E23 atoms of copper How many mol of magnesium ions are in 1.00 x 10²⁰ formula units of 2. magnesium nitride? ; $n = 1.66 \times 10^{-4}$ mol or 0.166 mmol n=p; n=1.00E20 formula units 6.02E23 formula units/mol Ρ NOT DONE YET.... $Mg_{3}N_{2}$; $n_{Ma} = 3 \times 0.166 \text{ mmol} = 0.498 \text{ mmol}$ What is the mass of 14.6 L of carbon monoxide at STP? 3. **C** = 12.01 n=v/V; n=14.6L/22.4L/mol; n=0.651785714... mol(don't round) m=nM; m=0.651785714...mol x 28.01g/mol; m= 18.256... g; 18.3g **O** = 16.00 28.01g/mol 4. How many atoms of xenon are in 15 L at SATP? n=v/V; n=15L/24.8L/mol; n = 0.6048387...mol p=nP; p= 0.6048387...mol x6.02E23 atoms/mol; p=3.6411...E23 p = 3.6 E 23 atoms How many moles of **carbon and oxygen** are in 6.02×10^{23} molecules of carbon 5. dioxide? n=p; n=6.02E23 formula units ; n= 1.00 mol 6.02E23 formula units/mol
 - NOT DONE YET....

CO₂; n_c = 1 x 1.00 = 1.00 mol of carbon; n_o = 2 x 1.00 = 2.00 mol of oxygen

- When studying reactions what unit are most quantities converted into? (HINT: What do the coefficients in front of a balanced equation represent?)
 Most quantities are converted into moles. The coefficients represent moles
- 7. What are the temperature, pressure and molar volume of a gas at STP? T = OC (273.15K); P=101.325 kPa; V=22.4 L/mol
- 8. What are the temperature, pressure and molar volume of a gas at SATP?
 T= 25 C (298.15 K); P = 100 kPa; V = 24.8 L/mol

Worksheet 3.1: Mole to Mole Stoichiometry

Directions: Write balanced equations with states. Solve the problem. Assume water is available.

- Liquid water decomposes into its elements. How many moles of hydrogen gas are produced if 0.500 mol of water is used?
 G
 R
 - G R step 1) ${}^{2}H_{2}O_{(l)} \rightarrow 2H_{2(g)} + O_{2(g)}$ 0.500 mol ? step 3) <u>0.500 mol of H₂O_{(g} x 2 mol of H_{2(g)} = 0.500 mol of H₂ (g) 2 mol of H₂O_(g)</u>
- Sulphur reacts with barium oxide. How many moles of sulphur are needed if 2.00 mol of barium oxide is used?

 R
 G

 1) 1 S₈ (s) +
 8 BaO (s) → 4 O₂(g) + 8 BaS (s)

 ?
 2.00 mol

 3) 2.00 mol of BaO_(s) x 1 mol of S_{8(s)} = 0.250 mol of S_{8(s)}

 8 mol of BaO_(s)

- 3. Methane gas burns. How many moles of oxygen gas are needed to completely burn 3.00 mol of methane?
 - **G R** 1) **1** CH_{4(g)} + **2** O_{2(g)} \rightarrow CO_{2(g)} + 2H₂O_(g)
 - <mark>3.00 mol</mark> ?
 - 3) 3.00mol of $CH_{4(g)}$ x 2 mol of $O_{2(g)} = 6.00$ moles of $O_{2(g)}$ 1 mol of $CH_{4(g)}$
- Sodium and phosphorus react. How many moles of phosphorus are needed if 0.600 mol of sodium metal is used?
 G
 R
 - 1) $\frac{12}{12}Na_{(s)} + 1P_{4(s)} \rightarrow 4Na_{3}P_{(aq)}$ 0.600 mol ?
 - 3) $\frac{0.600 \text{ mol of } Na_{(s)} \times 1 \text{ mole of } P_{4(s)}}{12 \text{ moles of } Na_{(s)}} = \frac{0.0500 \text{ moles of } P_4(s)}{12 \text{ moles of } Na_{(s)}}$
- 5. Magnesium phosphate reacts with lithium carbonate. How many moles of lithium carbonate are needed when 1.50 mol of magnesium phosphate is used?
 G R
 1) 1 Mg₃(PO₄)_{2(s)} + 3Li₂CO_{3(aq)} → 3MgCO_{3(s)} + 2Li₃PO_{4(aq)}
 1.50 mol ?
 - 3) $1.50 \text{ mol of Mg}_{3}(PO_{4})_{2(s)} \times 3 \text{ mol of Li}_{2}CO_{3(aq)} = \frac{4.50 \text{ mol of Li}_{2}CO_{3(aq)}}{1 \text{ mol of Mg}_{3}(PO_{4})_{2(s)}}$

- Sulphur dioxide decomposes. How many moles of sulphur dioxide are needed to produce 0.30 mol of sulphur?
 R
 G
 - 1) $8SO_{2(g)} \rightarrow 1 S_{8(s)} + 8O_{2(g)}$
 - 3) $\frac{0.30 \text{ mol of } S_{8(s)} \times 8 \text{ mol of } SO_{2(g)}}{1 \text{ mol of } S_{8(s)}} = \frac{2.4 \text{ mol of } Sulphur \text{ dioxide}}{2.4 \text{ mol of } Sulphur \text{ dioxide}}$
- Magnesium chloride reacts with sodium. How many moles of sodium are needed to react with 0.0250 mol of magnesium chloride?
 G
 R
 - 1) 1 MgCl_{2(aq)} + 2Na_(s) \rightarrow Mg_(s) + 2NaCl_(aq)
 - 3) $\frac{0.0250 \text{ mol MgCl}_{2(aq)} \text{ of } x \text{ 2 mol of } Na_{(s)}}{1 \text{ mol of MgCl}_{2(aq)}} = \frac{0.0500 \text{ mol of } Na_{(s)} (5.00 \text{ x } 10^{-2} \text{ mol})}{1 \text{ mol of MgCl}_{2(aq)}}$
- Iron (II) phosphate reacts with tin (IV) nitride. How many moles of tin (IV) nitride are needed to produce
 0.500 mol of iron (II) nitride?
 R
 G
 - 1) 2 Fe₃(PO₄)_{2(s)} + 1 Sn₃N_{2(s)} \rightarrow 2Fe₃N_{2(s)} + Sn₃(PO₄)_{4(s)}
 - 3) <u>0.500 mol of Fe₃N_{2(s)} x 1 mol of Sn₃N_{2(s)} = 0.250 mol of tin (IV) phosphate</u> 2 mol of Fe₃N_{2(s)}
- 9. Gasoline (C₈H₁₈₀) is burned. How many moles of carbon dioxide are produced when 3.00 mol of gasoline is reacted?
 G
 R
 2
 25
 16
 18
 - 1) $1 C_8 H_{18(s)} + 25/2 O_{2(g)} \rightarrow 8CO_{2(g)} + 9H_2O_{(g)}$
 - 3) 3.00 mol of $C_8H_{18(1)} \ge x = 8$ (16) mol of $CO_{2(g)} = 24.0$ mol of carbon dioxide. 1 (2)mol of $C_8H_{18(1)}$
- Chlorine reacts with potassium bromide. How many moles of chlorine would be needed to completely use up 25 mol of potassium bromide?
 R
 G
 - 1) 1 $CI_{2(g)}$ + 2KBr_(aq) \rightarrow 2 KBr_(aq) + Br_{2(l)}
 - 3) 25 mol of KBr_(aq) x 1 mol of Cl_{2 (q)} = 13 mol of chlorine 2 mol of KBr_(aq)

Worksheet 3.2: Mole to Quantity Stoichiometry

worksheet 5.2. Mole to adalitity Stolemonietry	
Directions: Solve the following hypothetical stoichiometry problems. Assume water is available.	
1. When 6.5 mol of solid potassium chlorate breaks into solid potassium chloride and oxygen gas, what	t
mass of solid potassium chloride is produced?	
1) $\frac{2}{KCIO_{3(s)}} \rightarrow 2KCI_{(s)} + 3O_{2(g)}$	
6.5 mol ?	
UNIT ANALYSIS OR LINEAR METHOD $n = 55 \text{ mm}^2 \times 2 \text{ mm}^2$ of KCl $\times 74.55 \text{ m}$ of KCl $\times -484 \text{ m} = 48 \times 40^2 \text{m}$ of KCl	
n = $\frac{6.5 \text{ mol}}{2} \times 2 \text{ mol}$ of KCl _(s) x 74.55 g of KCl _(s) = 484 g = $\frac{4.8 \times 10^2 \text{g}}{4.8 \times 10^2 \text{g}}$ of KCl _(s)	
<mark>2 mol of KCIO</mark> (s) 1 mol of KCI(s) <u>STEP BY STEP METHOD</u>	
2) no conversion	
3) mol ratio: $n_R = n_G \times R/G$	
$\frac{6.5 \text{ mol of KClO}_{3(s)}}{100} \times 2 \text{ mol of KCl}_{(s)} / \frac{2 \text{ mol of KClO}_{3(s)}}{100} = 6.5 \text{ moles of KCl}_{(s)}$	
4) m=nM m=74.55 g/ mol x 6.5 mol = 484g = $\frac{4.8 \times 10^2 \text{ g}}{\text{g}}$ of KCl_(s)	
2. When 5.00 mol of methane burns, what volume of carbon dioxide at STP, will be produced?	
G R	
1) 1 $CH_{4(g)}$ + 2 $O_{2(g)}$ \rightarrow 1 $CO_{2(g)}$ + 2 $H_2O_{(g)}$	
UNIT ANALYSIS OR LINEAR METHOD:	
5 <mark>.00 mol of CH₄ 1 mol of CO₂ 22.4 L of CO₂ = 112 L of CO₂</mark>	
1 mol of CH ₄ 1 mol of CO ₂	
STEP BY STEP METHOD: 2) no conversion	
3) n _R = n _G x R/G = 5.00 mol of CH₄ x 1 mol of CO₂ /1mol of CH₄ = 5.00 mol of CO₂	
4) v = nV v = 5.00 mol of CO ₂ x 22.4L/mol = <mark>112 L of <u>CO</u>2</mark>	
 How many particles of hydrochloric acid is needed to neutralize 2.50 mol of calcium hydroxide? R G 	
1) 2HCl _(ag) + $\frac{1}{1}$ Ca(OH) _{2(s)} \rightarrow 2H ₂ O _(g) + CaCl _{2(ag)}	
? 2.5 mol	
UNIT ANALYSIS OR LINEAR METHOD :	
n= <mark>2.5 mol of Ca(OH)_{2(s)} x 2 mol of HCl_(aq) x 6.02 x 10 23 particles of HCl_(aq) = <mark>3.01 E 24 particles</mark></mark>	
1 mol of Ca(OH) _{2(s)} 1 mol of HCl _(aq)	
STEP BY STEP:	
2) no conversion	
3) n _R = n _G x R/G = 2.5 mol of Ca(OH) _{2(s)} x 2 mol of HCl _(aq)	
1 mol of Ca(OH) _{2(s)}	
n=5.0 mol	
4) $p=nxP$ $p=6.02x10^{23} x5.0 mol = 3.01 E 24 or 3.01 x 10^{24} particles of HCl(aq)$	
 When 5.25 mol of butane (C₄H_{10(ℓ}) burns, what volume of water vapour will be produced at SATP? G 	
1) $1 C_4 H_{10}(I) + 6.5 O_2(g) \rightarrow 4 CO_2(g) + 5 H_2 O(g)$	
UNIT ANALYSIS OR LINEAR METHOD:	
UNIT ANALYSIS OR LINEAR METHOD: <u>5.25 mol of C₄H₁₀()</u> 5 mol of H₂O(g) 24.8 L of H₂O(g) = 651 L of H2O	
UNIT ANALYSIS OR LINEAR METHOD: $5.25 \text{ mol of } C_4H_{10(1)} 5 \text{ mol of } H_2O_{(g)} 24.8 \text{ L of } H_2O_{(g)} = 651 $	
UNIT ANALYSIS OR LINEAR METHOD: $5.25 \text{ mol of } C_4H_{10(1)}$ 5 mol of $H_2O_{(g)}$ 24.8 L of $H_2O_{(g)}$ = 651 L of H2O1 mol of $C_4H_{10(1)}$ 1 mol of $C_4H_{10(1)}$ 1 mol of $H_2O_{(g)}$ STEP BY STEP METHOD: 2) no conversion20 mol of $H_2O_{(g)}$ 1 mol of $H_2O_{(g)}$	
UNIT ANALYSIS OR LINEAR METHOD: $5.25 \text{ mol of } C_4H_{10(1)} 5 \text{ mol of } H_2O_{(g)} 24.8 \text{ L of } H_2O_{(g)} = 651 $	

5.	When excess silver reacts with 3.45 mol of zinc phosphate, what mass of silver phosphate would be produced?
	G R
	1) $6Ag_{(s)} + 1Zn_3(PO_4)_{2(s)} \rightarrow 2Ag_3(PO_4)_{(s)} + 3Zn_{(s)}$
	3.45 mol ?
	UNIT ANALYSIS OR LINEAR METHOD:
	3.45 mol of $Zn_3(PO_4)_2 \ge 2$ mol of $2Ag_3PO_4 \ge 418.58$ g of $Ag_3PO_4 = 2888$ g = 2.89 kg
	<mark>1 mol of Zn₃(PO₄)</mark> 2 1 mol of Ag ₃ PO ₄
	STEP BY STEP METHOD: 2) no conversion
	3) n _R = n _G x R/G = <mark>3.45 mol of Zn₃(PO₄)₂ x 2 mol of 2Ag₃PO₄=6.90 mol</mark>
	$\frac{1 \text{ mol of } Zn_3(PO_4)_2}{1 \text{ mol of } Zn_3(PO_4)_2}$
~	4) m=Mn = (418.58 g/mol)(6.90 mol) = 2888 g = 2.89×10^3 g or 2.89 kg
6.	When 3.00 mol of iron (II) hydroxide reacts with cobalt (II) phosphate, what mass of cobalt (II) phosphate is needed? G
	1) 3 Fe(OH) _{2(ag)} + Co ₃ (PO ₄) _{2(ag)} \rightarrow 3 Co(OH) _{2(s)} + Fe ₃ (PO ₄) _{2(ag)}
	3.00 mol ?
	UNIT ANALYSIS OR LINEAR METHOD:
	<u>3.00 mol of Fe(OH)_{2(aq}) x 3 mol of Co(OH)_{2(s)} x 552.55 g of Co₃(PO₄)_{2(s)} = 278.85 = 279 g of Co(OH)₂</u>
	3 mol of Fe(OH) _{2(aq)} 1 mol of Co3(PO4) _{2(s)}
	STEP BY STEP METHOD:
	 no conversion n_R = n_G x R/G = 3.00 mol of Fe(OH)_{2(aq}) x 3 mol of Co(OH)_{2(s)} =3.00 mol of Co(OH)_{2(s)}
	$\frac{1}{3 \text{ mol of Fe(OH)}_{2(aq)}}{3 \text{ mol of Fe(OH)}_{2(aq)}} = 3.00 \text{ mol of SO(OH)}_{2(s)}$
	4) m=Mn =(92.95 g/mol)(3.00 mol) = 278.85 = 279 g of Co(OH) ₂
7.	In a neutralization reaction, 4.56 mol of sodium hydroxide neutralizes the sulphuric acid. What mass of
	water is produced? G R
	1) $2\text{NaOH}_{(aq)} + H_2\text{SO}_{4(aq)} \rightarrow 2\text{H}_2\text{O}_{(g)} + \text{Na}_2\text{SO}_{4(aq)}$ 4.56 mol ?
	UNIT ANALYSIS OR LINEAR METHOD:
	4.56 mol of NaOH _(aq) x 2 mol of H ₂ O _(q) x 18.02 g of H ₂ O _(q) = 8.22x10 ¹ g of water
	2 mol of NaOH _(aq) 1 mol of H ₂ O _(g)
	STEP BY STEP METHOD:
	 no conversion n_R = n_G x R/G = 4.56 mol of NaOH x 2 mol of H₂O =4.56 mol of H₂O
	$\frac{1}{2} \text{ mol of NaOH} = \frac{1}{2} \text{ mol of H}_2 $
	4) m=Mn =(18.02 g/mol)(4.56 mol) <mark>= 8.22x10¹ g</mark> of water
8.	Hydrogen and 2.5 mol of nitrogen react to form ammonia. How many moles of ammonia will be produced
	at STP? SATP? G R
	1) $3 H_{2(g)} + \frac{1}{2} N_{2(g)} \rightarrow 2 NH_{3(g)}$
	UNIT ANALYSIS OR LINEAR METHOD STP SATP
	$\frac{2.5 \text{ mol of } N_{2(g)}}{1 \text{ mol of } NH_{3(g)}} \times 22.4L (24.8 \text{ L}) \text{ of } NH_{3(g)} = (112)\frac{1.1E2 \text{ L of } N_{2(g)}}{1.1E2 \text{ L of } N_{2(g)}} (124)\frac{1.2E2 \text{ L of } N_{2(g)}}{1 \text{ mol of } N_{3(g)}} = (112)\frac{1.1E2 \text{ L of } N_{2(g)}}{1.1E2 \text{ L of } N_{2(g)}} (124)\frac{1.2E2 \text{ L of } N_{2(g)}}{1 \text{ mol of } N_{3(g)}}$
	STEP BY STEP METHOD:
	2) no conversion
	3) $n_R = n_G x R/G = \frac{2.5 \text{ mol of } N_2 x 2 \text{ mol of } H_2O}{2} = 5.00 \text{ mol of } N_2$
	1 mol of NaOH
	4) v=nV =(5.00mol)(22.4L/mol) <mark>=1.1E2</mark> L of N ₂ STP; v=nV=(5.00mol)(24.8L/mol) <mark>= 1.2E2</mark> L of N ₂ SATP

Chemistry 20 Worksheets

Worksheet 3.3: Quantity to Mole Stoichiometry

	WORKSHEEL J.J. QUARTILY TO MORE STO	icilionieu y	
Direct	ions: Solve the following hypothetical stoichiometry problems.	Assume water is a	vailable.
1.	How many moles of iron (III) oxide is produced when 5.6 g of irc	n burns with oxygen	gas?
	G R		•
	1) $\overline{2}$ Fe _(s) + 3/2 O _{2(g)} \rightarrow 1Fe ₂ O _{3(s)}		
	5.6 g ?		
	UNIT ANALYSIS OR LINEAR METHOD		
	5.6 g of Fe _(s) x 1 mol of Fe _(s) x 1 mol of Fe ₂ O _{3 (s)} = 0.050 mol o	<u>f Fe₂O_{3(s)}</u>	
	55.85 g of Fe _(s) 2 mol of Fe _(s)		
	STEP BY STEP METHOD:		
	2)		
	3) $n_R = n_G x R/G = 0.10 \text{ mol}$ of $Fe_{(s)} x 1 \text{ mol}$ of $Fe_2O_{3(s)}$ $n=0.0$	50 mol of Fe ₂ O _{3(s)}	
	2 mol of Fe _(s)		
2.	When 4 <mark>.00 x 10²³ particles of methanol</mark> is burned, how many mo	oles of water vapour	are produced?
	1) $\frac{1}{2}$ CH ₃ OH ₍₁₎ + 3/2 O _{2(g)} \rightarrow 1 CO _{2(g)} + 2 H ₂ O _(g)		
	UNIT ANALYSIS OR LINEAR METHOD	- /	
	$4.00 \times 10^{23} \text{ part of CH}_{3} \text{OH}_{(1)} \times 1 \text{ mol of CH}_{3} \text{OH}_{(1)} \times 2 \text{ mol of H}_{2}$		1.33 mol of $H_2O_{(l)}$
	6.02E23 part of CH ₃ OH ₍₁₎ 1 mol of CH	<mark>3ОН</mark> (I)	
	STEP BY STEP:		
	2) n=p/P = 4.00×10^{23} part of CH ₃ OH ₍₁₎ /6.02E23 part of CH ₃ OH(1) pe		
	3) $n_r = n_g x R/G = 0.66445 mol of CH3OH(1) x 2 mol of H2O(g) = 1$		mol of H ₂ O()
	1 mol of CH ₃ OH ₍₁₎		
3.	If 122.6 g of solid potassium chlorate is heated, the crystals me	•	nto solid potassium
	chloride and oxygen gas. How many moles of potassium chloric G R	the are formed? $K = 39.10 x$	1 - 20 10
		$R = 39.10 \times$ $Cl = 35.45 \times$	
	1) $2 \text{ KCIO}_{3(s)} \rightarrow 2 \text{ KCI}_{(s)} + 3 \text{ O}_{2(g)}$ 122.6 g ?	O = 16.00x	
	UNIT ANALYSIS OR LINEAR METHOD	TOTAL	
			125.55g/mol
	<u>122.6 g of KCIO_{3(s)} x 1 mol of KCIO_{3(s)} x 2 mol of KCI_{(s} = 1.000 122.55 g of KCIO_{3(s)} 2 mol of KCIO_{3(s)}</u>		
	STEP BY STEP METHOD		
	2) n=m/M =122.6 g / 122.55 g/mol =1.000 mol of KClO _{3(s)}		
	3) $n_R = n_G x R/G = 1.000 \text{ mol of KClO}_{3(s)} x 2 \text{ mol of KCl}_{(s)} = 1.000$		
	$\frac{1}{2 \text{ mol of KClO}_{3(s)}}$		
4.	Black iron (III) oxide solid can be converted into water and	iron metal when the	e iron (III) oxide is
	reacted with hydrogen gas. If 125 g of iron (III) oxide is reacted,		``
	G R	, , , , , , , , , , , , , , , , , , ,	
	1) <mark>1</mark> Fe ₂ O _{3(s)} + 3 H _{2(g)} → 2 Fe _(s) + 3 H ₂ O _(g)	Fe = 55.85	x2 =111.70
	125 g ?	O = 16.00 x	(3 = <u>48.00</u>
	UNIT ANALYSIS OR LINEAR METHOD	TOTAL	159.70g/mol
	<u>125 g of Fe₂O_{3(s)}x 1 mol of Fe₂O_{3(s)} x 3 mol of H₂O_(g) = 2.34815</u>	. mol = <mark>2.35 mol of</mark>	H ₂ O _(g)
	159.70 g of Fe ₂ O _{3(s)} 1 mol of Fe ₂ O _{3(s)}		
	STEP BY STEP METHOD:		
	2) n=m/M = <mark>125g / 159.70 g/mol = 0.7827175 mol of Fe₂O_{3(s)}</mark>		
	3) $n_R = n_G x R/G = \frac{0.7827175mol of Fe_2O_{3(s)}x}{1 mole of H_2O_{(g)}} = \frac{1}{1} mole of H_2O_{(g)} = \frac{1}{1} mole of H_2O$		35 mol of H ₂ O _(g)
	2 moles of Fe ₂ O _{3(s})	

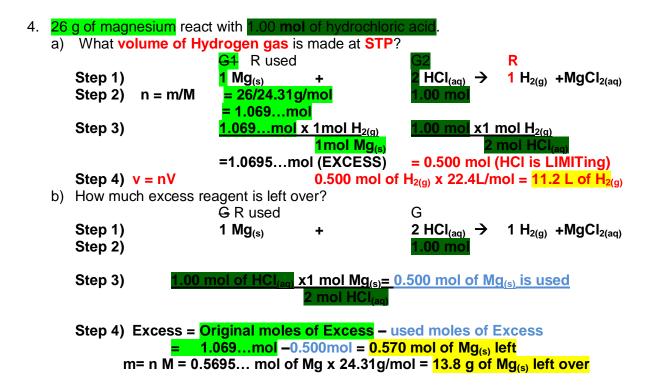
 5. How many moles of zinc can react with hydrochloric acid to form 44.8 L of hydrogen gas at STP? R G 1) 1 Zn_(s) + 2 HCl_(aq) →1 H_{2(g)} + ZnCl_{2(aq)} ? 44.8 L UNIT ANALYSIS OR LINEAR METHOD: 44.8 L of H₂ x 1 mol of H₂ x 1 mol of Zn = 2.00 mol of Zn 22.4 L of H₂ 1 mol of H₂ STEP BY STEP METHOD: 2) n=v/V = 44.8 L / 22.4 L/mol =2.00 mol of H2
3) n _R = n _G x R/G = 2 <mark>.00 mol of H₂ x 1 mol of Zn = 2.00 mol of Zn</mark> <mark>1 mol of H₂</mark>
6. Solutions of copper (II) sulphate and potassium phosphate are mixed. If 8.5 g of copper (II) phosphate form, how many moles of copper (II) sulphate react? R G P = 30.97x2=61.94 1) 3 CuSO _{4(aq)} + 2 K ₃ PO _{4(aq)} \rightarrow 3 K ₂ SO _{4(aq)} + 1 Cu ₃ (PO ₄) _{2(s)} O = 16.00x8= <u>128.00</u> ? mol 8.5 g TOTAL = <u>380.59g/mol</u> 2) n=m/M = 8.5 g of Cu ₃ (PO ₄) _{2(s)} / 380.59g/mol of Cu ₃ (PO ₄) _{2(s)} = 0.02233mol of Cu ₃ (PO ₄) _{2(s)} 3) n _R = n _G x R/G = <u>0.500 mol of Fe₃N_{2(s)} x 1 mol of Sn₃N_{2(s)} = 0.250 mol of tin (IV) phosphate</u>
<mark>2 mol of Fe₃N₂(s</mark>) LINEAR: <mark>8.5 g of Cu₃(PO₄)₂(s) x <u>1mol of Cu₃(PO₄)₂(s)</u> x <u>1 mol of Sn₃N₂(s)</u> = <mark>0.250 mol of tin (IV) phosphate</mark></mark>
 380.59g/mol of Cu₃(PO₄)_{2(s)} 2 mol of Fe₃N_{2(s)} 7. In the manufacturing of nitric acid, nitrogen dioxide gas reacts with water to from nitric acid and nitrogen monoxide gas. How many moles of nitrogen dioxide gas reacts if 120.6 L of nitrogen monoxide gas is formed at SATP? R G 1) 3 NO_{2(g)} + H₂O_(l) → 2 HNO_{3(aq)} + 1 NO_(g) ? 120.6 L UNIT ANALYSIS OR LINEAR METHOD: 120.6 L of NO_{2(g)} x 1 mol of NO_{2(g)} x 3 mol of NO_(g) = 14.59 moles of NO_(g)
24.8 L of NO _{2(g)} 1 mol of NO _{2(g)}
STEP BY STEP METHOD: 2) n=v/V = <mark>120.6 L / 24.8 mol/L = 4.863 mol of NO_{2(g)} 3) n_R = n_G x R/G = <u>4.863 mol of NO_{2(g)} x 3 mol of NO_(g) =14.59 moles</u> of NO_(g) 1 mol of NO_{2(g)}</mark>
8. The thermite reaction is used in welding iron and steel. Aluminium and iron (III) oxide are ignited at high temperatures to produce aluminium oxide and iron. If 15.0 g of aluminium is used in this reaction, how many moles of aluminium oxide will be produced? G R
Step 1) 2 Al _(s) + Fe ₂ O _{3(s)} → 1 Al ₂ O _{3(s)} + 2 Fe _(s) 15.0g ? mol
Step 2) n=m/M = <mark>15.0g of Al(s)/26.98g/mol = 0.55596…mol of Al(s)</mark>
Step 3) n _R = n _G x R/G = <mark>0.55596…mol of Al(s)</mark> x 1 mol of Al ₂ O _{3(s)} / <mark>2 mol of Al(s)</mark> = 0.27798… = <mark>0.278mol of Al₂O_{3(s)}</mark> LINEAR: <u>15.0g of Al(s)x 1 mol of Al(s) x 1 mol of Al₂O_{3(s) =}</u> 0.27798… mol = <mark>0.278mol of Al₂O_{3(s)} 26.98g of Al(s) 2 mol of Al(s)</mark>

Worksheet 3.4: Quantity to Quantity Stoichiometry

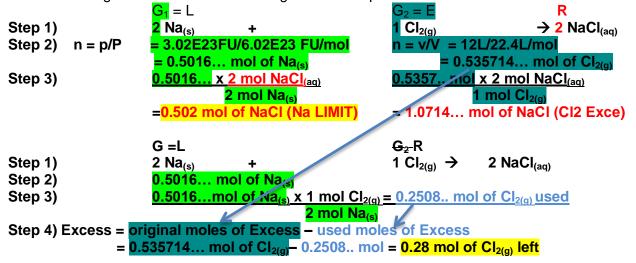
Directions: Solve the following hypothetical stoichiometry problems. Assume water is available.

1. How many particles of aluminium oxide must be decomposed to produce 80.0 g of oxygen gas at STP? R G 1) 2 AI_2O_3 (s) \rightarrow 4 $AI_{(s)}$ + 3 $O_{2(g)}$ UNIT ANALYSIS OR LINEAR METHOD: 80.0 g of $O_{2(q)}$ x1 mol of $O_{2(q)}$ x 2 mol of Al₂O_{3(s)} x6.02E23 particles of Al₂O_{3(s)}=1.00E24 part of Al₂O_{3(s)} 32.00 g of $O_{2(q)}$ 3 mol of $O_{2(q)}$ 1 mol of Al₂O_{3(s)} STEP BY STEP: 2) n = m/M = 80.0g /32.00 g/mol = 2.5 mol of O₂ 3) $n_R = n_G x R/G = 2.5 \text{ mol of } O_2 x 2 \text{ mol of } Al_2O_3 = 1.666666... \text{ mol of } Al_2O_{3(s)}$ 3 mol of O₂ 4) p = n P = 1.6666...mol x 6.02 E 23 particles/mol = $\frac{1.00 \text{ E } 24 \text{ or } 1.00 \text{ x } 10^{24} \text{ particles of } Al_2O_{3(s)}}{10^{24} \text{ particles of } Al_2O_{3(s)}}$ 2. Natural gas is mainly made up of methane. What mass of methane must be burned to produce 56.0 L of carbon dioxide at STP? R 1) 1 CH₄(g) + 2 O₂(g) \rightarrow 1 CO₂(g) + 2 H₂O (g) LINEAR: **56.0 L of CO₂ x 1 mol of CO₂ x 1 mol of CH₄ x 16.05 g of CH₄ = 40.1 g of CH_{4(a)}** 22.4 L of CO₂ 1 mol of CO₂ 1 mol of CH₄ STEP BY STEP: 2) n=v/V = 56.0 L of CO₂/22.4 L of CO₂ = 2.5 mol of CO₂ 3) $n_R = n_G \times R/G = 2.5 \text{ mol of } CO_2 \times 1 \text{ mol of } CH_4/1 \text{ mol of } CO_2 = 2.5 \text{ mol of } CO_2$ 4) m = nM = 2.5 mol of CO₂ x 16.05g/mol of CO₂ = $\frac{40.1 \text{ g of CH}_{4(a)}}{40.1 \text{ g of CH}_{4(a)}}$ 3. Aluminium metal is refined from bauxite ore. In the refining process, aluminium oxide decomposes to aluminium and oxygen gas. What mass of aluminium can be produced from 2.04 kg of aluminium oxide? R G 1) 2 Al₂O₃ (s) \rightarrow 4 Al (s) + 3 O₂(q) LINEAR: 2040 g of Al₂O₃ x 1 mol of Al₂O₃ x 4 mol of Al <u>x 26.98 g of Al</u> = 1079.6 g = 1.08 kg of Al 101.96 g of Al₂O₃ 2 mol of Al₂O₃ 1 mol of Al STEP BY STEP: 2) n =m/M = 2040 g of Al₂O₃/101.96g/mol of Al₂O₃ = 20.0078... mol of Al₂O₃ 3) n_R = n_G x R/G = 20.0078...mol of Al₂O₃ x 4 mol of Al/2 mol of Al₂O₃ = 40.0156... mol of Al(s) 4) m = nM = 40.0156... mol of Al(s) x 26.98 g/mol of Al = 1079.6 g = 1.08 kg of Al 4. Sodium hydrogen carbonate can be used to neutralize acids. If sodium hydrogen carbonate reacts with hydrochloric acid, what volume of carbon dioxide gas at STP can be produced by 16.8 g of sodium hydrogen carbonate? NOTE: Sodium chloride and water vapour is also produced. G 1) 1 NaHCO₃ (aq) + 1 HCl(aq) \rightarrow 1 CO₂ (g) + 1 NaCl (aq) + 1 H₂O(l) LINEAR: 16.8 g of NaHCO₃ x 1 mol of NaHCO₃ x 1 mol of CO₂ x 22.4 L of CO₂ = 4.48 L of CO_{2(a)} 84.01 of NaHCO₃ 1 mol of NaHCO₃ 1 mol of CO₂ STEP BY STEP: 2) n=m/M = 16.8 g of NaHCO₃/ 84.01 g/mol of NaHCO₃ = 0.19997...mol of NaHCO₃ 3) $n_R = n_G x R/G = 0.19997...mol of NaHCO_3 x1 mol of CO_2/1mol of NaHCO_3 = 0.19997...mol of NaHCO_3$ 4) v = nV =0.19997...mol of NaHCO₃ x 22.4 L of CO₂ = 4.48 L of CO_{2(a)}

5. Photography film is coated with silver chloride, which is produced when silver nitrate reacts with sodium
chloride. What mass of silver chloride can be made from 11.7 g of sodium chloride? G
1) 1 NaCl (aq) + 1 AgNO ₃ (aq) \rightarrow 1 AgCl (aq) + 1 NaNO ₃ (aq)
LINEAR: 11.7 g of NaCl x 1 mol of NaCl x 1 mol of AgCl x 143.32 g of AgCl = 28.7 g of AgCl
58.44g of NaCl 1 mol of NaCl 1 mol of AgCl
2) n = m/M <mark>= <u>11.7 g/</u>58.44g/mol = 0.200205…mol of NaCl</mark> 3) n _R = n _G x R/G = <mark>0.200205…mol of NaCl</mark> x <u>1 mol of AgCl = 0.200205…mol of AgCl</u>
$\frac{1 \text{ mol of Agel} = 0.200203mol of Agel}{1 \text{ mol of NaCl}}$
4) m = nM = 0.200205…mol of AgCl x 143.32g/mol = 28.693…g <mark>= 28.7g of AgCl</mark>
 Ammonia reacts with hydrochloric acid to produce ammonium chloride. What volume of ammonia at SATP is needed to produce 36.1 g of ammonium chloride? R G
1) 1 NH₃ (g) + 1 HCl(aq) → <mark>1</mark> NH₄Cl(aq)
LINEAR: 36.1 g of NH ₄ Cl x 1 mol of NH ₄ Cl x 1 mol of NH ₃ x 24.8 L of NH ₃ = 16.7 L of NH ₃ $52.52 = c f NH_4 Cl = 1 mol of NH_4 Cl = 1 mol of NH_4$
<mark>53.50 g of NH₄CI 1 mol of NH₄CI</mark> 1 mol of NH₃ STEP BY STEP:
2) n = m/M = $\frac{36.1g}{53.50g}$ mol = 0.674766mol of NH4Cl
3) n _R = n _G x R/G = 0.674766mol of NH4Cl x 1 mol of NH3 = 0.674766 mol of NH3
1 mol of NH4Cl
4) v = n V = 0.674766… mol of NH3 x 24.8L/mol = 16.734… L <u>= 16.7 L of NH₃</u>
 If sulphuric acid reacts with 29.4 g of potassium hydroxide, what mass of potassium sulphate is produced? G R
1) 2 H ₂ SO ₄ (aq) + $\frac{2}{2}$ KOH(aq) → 1 K ₂ SO ₄ (aq) + 2 HOH(I)
LINEAR: 29.4 g of KOH x 1 mol of KOH x 1 mol of K_2SO_4 x 174.27 g of K_2SO_4 = 45.7 g of K_2SO_4
<mark>56.11 g of KOH 2 mol of KOH</mark> 1 mol of K₂SO₄ STEP BY STEP:
2) n = m/M = $\frac{29.4g}{56.11g}$ mol =
3) $n_R = n_G \times R/G =$
4) $m = nM$
8. If sodium iodide reacts with lead (II) nitrate, what mass of lead (II) nitrate will be required to produce 150 g
of precipitate?
R
LINEAR: $\frac{150 \text{ g of Pbl}_2 \times 1 \text{ mol of Pbl}_2}{100 \text{ g of Pbl}_2 \times 1 \text{ mol of Pbl}_2} \times 1 \text{ mol of Pb}(NO_3)_2} \times 331.22 \text{ g of Pb}(NO_3)_2 = 108 \text{ g of Pb}(NO_3)_2$
$\frac{461 \text{ g of Pbl}_2 1 \text{ mol of Pbl}_2}{461 \text{ g of Pbl}_2 1 \text{ mol of Pbl}_2} 1 \text{ mol of Pb}(\text{NO}_3)_2$
STED BY STED.


STEP BY STEP:

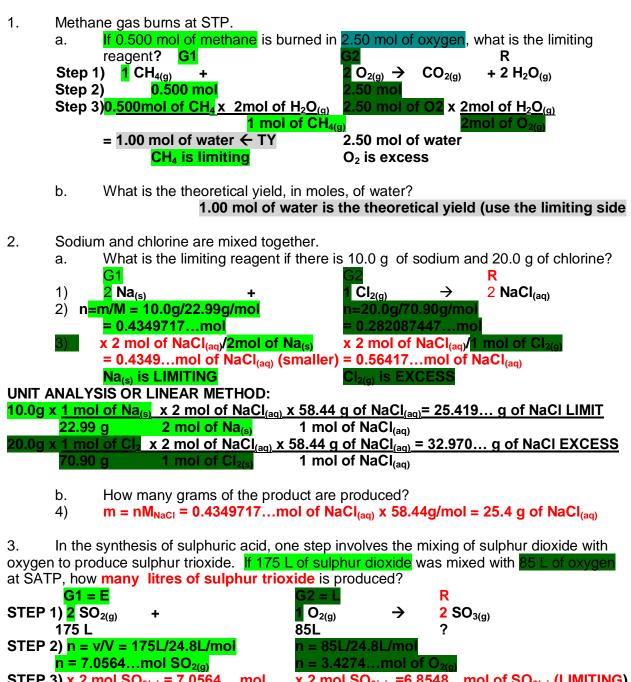
2) n = m/M = 3) **n**_R = n_G x R/G = 4) m = nM


Worksheet 2.5: Limiting & Excess Reagents

Directions: For each of the following, write a balanced equation and determine the limiting reagent

8 tho	ent	ant (if they are present)
		ent (if they are present). pline (C ₈ H ₁₈₍₁₎) burns 47.0 mol of oxygen at STP. How many moles of carbon
		esent at STP? B) How many moles of excess remains?
ŭ		Excess G R used G=L R
		(2) (25) (16) (18)
	Step 1)	$\frac{1}{1} C_8 H_{18(1)} + \frac{12.5}{12.5} O_{2(q)} \rightarrow 8 CO_{2(q)} + 9 H_2 O_{(q)}$
	Step 3) <mark>5.0</mark>	mol of C_8H_{18} x 8 mol of CO_2 = 40 mol of $CO_{2(g)}$ (C_8H_{18} is EXCESS)
		1 mol of C ₈ H ₁₈₍₁₎
	47.	0 mol x 8 mol of CO _{2(g)} = 30.08 mol of CO _{2(g)} (LIMITING)=30.1 mol of CO _{2(g)} 12.5 mol of O _{2(g)}
b)	Stop 2)	U mol of O_2 x <u>1 mol of C₈H₁₈ = 3.76 mol of C₈H₁₈ used</u>
6)	Step 3)	$\frac{12.5 \text{ mol of } O_2}{12.5 \text{ mol of } O_2} = 3.76 \text{ mol of } C_8 H_{18} \text{ dsed}$
Rem	ains <mark>= Origin</mark>	al Excess (Step 2) – Used Excess (Step 3)
		$nol = 1.24 \text{ mol} = \frac{1.2 \text{ mol} \text{ left over (2 sig digs)}}{1.2 \text{ mol} \text{ left over (2 sig digs)}}$
		gen is added to 6.0 g of oxygen. How many grams of water are formed?
		ess reagent is left over in grams?
• •		$\mathbf{G}_{\mathbf{Z}}^{\mathbf{Z}} \mathbf{R}_{\mathbf{Z}} \mathbf{R}_{\mathbf{Z}}$
		$O_{2(g)} + 2 H_{2(g)} \rightarrow 2 H_2O_{(g)}$
		=m/M = 18.0g/2.02g/mol of H2 = 8.9mol of water
	• •	= m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen
		9 mol of H ₂ x 2mol of water = 8.9 mol of water (H ₂ is EXCESS)
	. /	2mol of H ₂
	0.	1875mol of O ₂ x 2mol of water = 0.375 mol of water (O ₂ is LIMITING)
		1mol of O ₂
	Step 4) 0.3	75 mol x 18.02g/mol = 6.8 g of water is produced
		i j mor x ro. 020/mor = 0.0 q or water is produced
		75 mor x 10.02g/mor = 0.8 g or water is produced
	b) Step 2)	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen875 mol of O2 x 2mol of H2 = 0.375 mol of H2 used
	b) Step 2)	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen
	b) Step 2) Step 3) 0.1	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used
	b) Step 2) Step 3) 0.1 Remaining	n = m/M = $6.0g/32.0g/mol = 0.1875 \text{ mol of oxygen}$ 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ = Original moles of Excess = 8.9mol of water - 0.375 mol = 8.545mol remaining
	b) Step 2) Step 3) 0.1 Remaining	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ = Original moles of Excess – Used moles of Excess
	b) Step 2) Step 3) 0.1 Remaining Step 4) m=	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ = Original moles of Excess – Used moles of Excess = <u>8.9mol of water</u> – 0.375 mol = 8.545mol remaining mM = 8.545mol x 2.02g/mol = 17.2 = 17 g
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ = Original moles of Excess – Used moles of Excess = <u>8.9mol of water</u> – 0.375 mol = 8.545mol remaining mM = 8.545mol x 2.02g/mol = 17.2 = 17 g methane reacts with 22.4 mL of oxygen at SATP. How many moles of water
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made?	m = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ $= \text{Original moles of Excess} - \text{Used moles of Excess}$ $= 8.9mol \text{ of water} - 0.375 \text{ mol} = 8.545mol \text{ remaining}$ mM = 8.545mol x 2.02g/mol = 17.2 = 17 g methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used G R
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made? Step 1)	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ = Original moles of Excess – Used moles of Excess = 8.9mol of water – 0.375 mol = 8.545mol remaining mM = 8.545mol x 2.02g/mol = 17.2 = 17 g methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used G R used R 1 CH _{4(g)} + 2 O _{2(g)} → CO _{2(g)} + 2 H ₂ O _(g)
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made?	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ = Original moles of Excess – Used moles of Excess = 8.9mol of water – 0.375 mol = 8.545mol remaining mM = 8.545mol x 2.02g/mol = 17.2 = 17 g methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used 1 CH _{4(g)} + 2 O _{2(g)} → CO _{2(g)} + 2 H ₂ O _(g) n = v/V
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made? Step 1)	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ = Original moles of Excess – Used moles of Excess = 8.9mol of water – 0.375 mol = 8.545mol remaining mM = 8.545mol x 2.02g/mol = 17.2 = 17 g methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used 1 CH _{4(g)} + 2 O _{2(g)} → CO _{2(g)} + 2 H ₂ O _(g) n = v/V = 0.0224/24.8
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made? Step 1) Step 2)	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ = Original moles of Excess – Used moles of Excess = 8.9mol of water – 0.375 mol = 8.545mol remaining mM = 8.545mol x 2.02g/mol = 17.2 = 17 g methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used 1 CH _{4(g)} + 2 O _{2(g)} → CO _{2(g)} + 2 H ₂ O _(g) n = v/V = 0.0224/24.8 = 9.03E-4 mol = 0.0375mol of oxygen at SATP.
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made? Step 1) Step 2)	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x <u>2mol of H₂</u> = 0.375 mol of H ₂ used 1mol of O ₂ ■ Original moles of Excess – Used moles of Excess = 8.9mol of water – 0.375 mol = 8.545mol remaining methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used 1 CH _{4(g)} + $\begin{cases} Q & R \\ 2 O_{2(g)} \rightarrow \\ 0.0224/24.8 \\ 0.0224/24.8 \\ 0.0224/24.8 \\ 0.03E-4 mol \\ 0.03E-4 mol of O2 x 2mol H2O(g) \end{cases}$
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made? Step 1) Step 2) Step 3) <u>9.0</u>	m = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x 2mol of H ₂ = 0.375 mol of H ₂ used 1mol of O ₂ ■ Original moles of Excess – Used moles of Excess = 8.9mol of water – 0.375 mol = 8.545mol remaining methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used 1 CH _{4(g)} + 2 O _{2(g)} → CO _{2(g)} + 2 H ₂ O _(g) n = v/V = 0.0224/24.8 = 9.03E-4 mol 3E-4 x 2mol H ₂ O _(g) 1 mol CH _{4(g)} = 0.0224/24.8 = 9.03E-4 mol of O ₂ x 2mol H ₂ O _(g)
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made? Step 1) Step 2) Step 3) <u>9.0</u> = 1.	n = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O ₂ x 2mol of H ₂ = 0.375 mol of H ₂ used 1mol of O ₂ = Original moles of Excess - Used moles of Excess = 8.9mol of water - 0.375 mol = 8.545mol remaining mM = 8.545mol x 2.02g/mol = 17.2 = 17 g methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used 1 CH _{4(g)} + Q _{2(g)} → CO _{2(g)} + 2 H ₂ O _(g) n = v/V = 0.0224/24.8 = 9.03E-4 mol 3E-4 x 2mol H ₂ O _(g) 1 mol CH _{4(g)} = 9.03E-4 mol of Oz x 2mol H ₂ O _(g) 806E-3 mol (EXCESS) = 9.03E-4 mol of water (O ₂ is LIMITING)
3.	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made? Step 1) Step 2) Step 3) <u>9.0</u> = 1.	m = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O2 x 2mol of H2 = 0.375 mol of H2 used 1 mol of O2 = Original moles of Excess - Used moles of Excess = 8.9mol of water - 0.375 mol = 8.545mol remaining mM = 8.545mol x 2.02g/mol = 17.2 = 17 g methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used R = 0.0224/24.8 = 9.03E-4 mol 9.03E -4 mol 9.03E -4 mol 9.03E -4 mol of O2 x 2mol H2O(g) 1 mol CH4(g) S = 9.03E-4 mol of water (O2 is LIMITING) = 0.03E -4 mol of O2 x 1 mol of CH4 = 4.516E-4 mol of CH4 used
-	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made? Step 1) Step 2) Step 3) <u>9.0</u> = 1. B) Step 3)	$m = m/M = 6.0g/32.0g/mol = 0.1875 \text{ mol of oxygen} \\ 875 \text{ mol of } O_2 \times 2 \text{ mol of } H_2 = 0.375 \text{ mol of } H_2 \text{ used} \\ 1 \text{ mol of } O_2 \\ = \text{ Original moles of Excess} - \text{Used moles of Excess} \\ = 8.9mol of water - 0.375mol = 8.545mol remaining \\ mM = 8.545mol \times 2.02g/mol = 17.2 = 17 g \\ \\ methane \text{ reacts with } 22.4 \text{ mL of oxygen at SATP. How many moles of water} \\ G \text{ R used } & R \\ 1 \text{ CH}_{4(g)} + 2 O_{2(g)} \rightarrow \text{ CO}_{2(g)} + 2 \text{ H}_2 O_{(g)} \\ n = v/V \\ = 0.0224/24.8 \\ = 9.03E-4 \text{ mol} \\ 3E-4 \times 2\text{ mol } H_2 O_{(g)} \\ 1 \text{ mol } \text{ CH}_{4(g)} & 9.03E-4 \text{ mol of } O_2 \times 2\text{ mol } H_2 O_{(g)} \\ 1 \text{ mol } \text{ CH}_{4(g)} & 9.03E-4 \text{ mol of } O_2 \times 2\text{ mol } H_2 O_{(g)} \\ 1 \text{ mol } \text{ CH}_{4(g)} & 9.03E-4 \text{ mol of } O_2 \times 2\text{ mol } H_2 O_{(g)} \\ 1 \text{ mol } \text{ CH}_{4(g)} & 9.03E-4 \text{ mol of } O_2 \times 2\text{ mol } H_2 O_{(g)} \\ 1 \text{ mol } \text{ CH}_{4(g)} & 9.03E-4 \text{ mol of } O_2 \times 2\text{ mol } H_2 O_{(g)} \\ 1 \text{ mol } \text{ CH}_{4(g)} & 1 \text{ mol } \text{ of } O_2 \times 1 \text{ mol of } \text{ CH}_4 \text{ used} \\ 1 \text{ mol } \text{ of } O_2 \times 1 \text{ mol of } \text{ CH}_4 = 4.516E-4 \text{ mol of } \text{ CH}_4 \text{ used} \\ 1 \text{ mol of } O_2 \\ 1 \text{ mol of } O_2 \end{bmatrix}$
EXCI	b) Step 2) Step 3) 0.1 Remaining Step 4) m= 22.4 mL of are made? Step 1) Step 2) Step 3) <u>9.0</u> = 1. B) Step 3)	m = m/M = 6.0g/32.0g/mol = 0.1875 mol of oxygen 875 mol of O2 x 2mol of H2 = 0.375 mol of H2 used 1 mol of O2 = Original moles of Excess - Used moles of Excess = 8.9mol of water - 0.375 mol = 8.545mol remaining mM = 8.545mol x 2.02g/mol = 17.2 = 17 g methane reacts with 22.4 mL of oxygen at SATP. How many moles of water G R used R = 0.0224/24.8 = 9.03E-4 mol 9.03E -4 mol 9.03E -4 mol 9.03E -4 mol of O2 x 2mol H2O(g) 1 mol CH4(g) S = 9.03E-4 mol of water (O2 is LIMITING) = 0.03E -4 mol of O2 x 1 mol of CH4 = 4.516E-4 mol of CH4 used

5. 3.02 x 10²³ formula units of sodium react with 12 L of chlorine gas at STP. How much excess reagent is left over if the limiting is all used up?

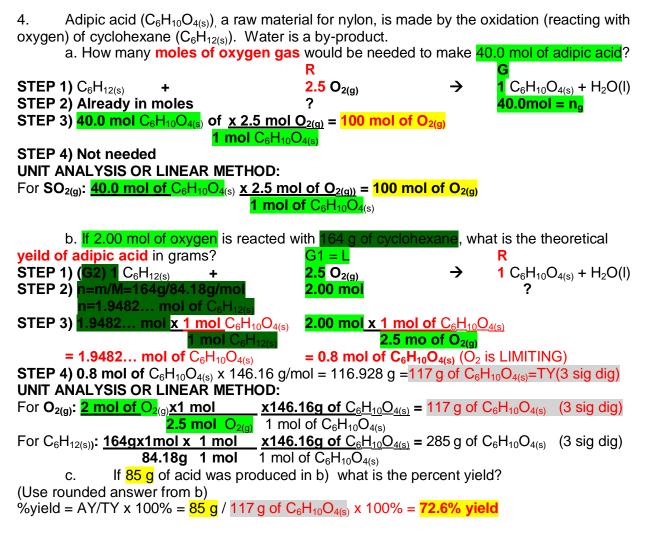

- 6. Describe a limiting reagent and an excess reagent.
 - A limiting reagent is a reactant that controls how much product you have (it is the first reagent to be used up.
 - An excess reagent is a reactant that is left over (it is not all used up)

Worksheet 2.6: Percent yield and Percent error

Directions: For each of the following write a balanced equation and determine the theoretical yield, actual yield, percent yield & the percent error. 8.0 mol of sulphur dioxide decomposes and actually produces 7.0 mol of oxygen gas. 1. G R = TYStep 1) 8 SO_{2(g)} \rightarrow S_{8(s)} + 8 O_{2(g)} 7.0 *mol* = AY; TY = ? 8.0 mol Step 3) 8.0 mol $SO_{2(a)} \times 8$ mol of $O_{2(a)} = 8.0$ mol of $O_{2(a)}$ is the TY 8 mol of SO_{2(a)} 7.0 mol/ 8.0 mol x 100 = 88 % Step 5) % yield = AY/TY x100 % error = $(TY - AY) = 12.5 = \frac{13\%}{(100 - 87.5 =$ TΥ 26.0 g of aluminum reacts with a solution of calcium nitrate and produces 3.00 moles of 2. calcium. G $\mathbf{R} = \mathbf{T}\mathbf{Y} = ?$ Step 1) 2 Al (s) $3 \text{ Ca (NO}_3)_{2(aq)} \rightarrow$ 2 AI(NO₃)_{3(aq)} 3 Ca (s) + Step 2) 26.0g/26.98g/mol 3.00 *mol* = AY = 0.964... mol Step 3) 0.964... mol x <u>3 mol of Ca_(s)</u> = 1.44... mol of Ca_(s) = TY 2 mol of Al_(s) 3.00 mol / 1.44... mol x 100 = 208% because of of the Step 5) % yield = $AY/TY \times 100$ solution (not evaporated) % error = (TY - AY)/TY x 100 = +<mark>108%</mark> 3. 6.50 mol of potassium chlorate solid is heated and breaks down into potassium chloride solid and 223 L of oxygen gas at SATP. R(TY) = ?G Step 1) 2 KCIO_{3(s)} \rightarrow 2KCl_(s) 3 O_{2(g)} 223L = AY Step 2) 6.50 mol (n=v/V= 223L/24.8L/mol =8.99... mol) 6.50 mol KClO₃ x 3 mol of O₂ = 9.75... mol of O₂ = TY Step 3) **2mol of KCIO₃** Step 4) $v = nV = 9.75 \times 24.8 = 241.8 L = TY$ (Not necessary if you changed AY to moles) Step 5) % yield AY/TY x 100 = 223L/241.8 L x 100% = 92.2% (%yield =8.99.../9.75 x 100%) % error = (TY-AY)/TY x 100% = (241.8L - 223L)/241.8L = 7.78% 33.6 L of methane burns and produces 2.00 mol of carbon dioxide gas at STP. 4. G R 1 CO_{2(g)} 2 H₂O_(a) Step 1) balance $2 O_{2(q)} \rightarrow$ Step 2) n = v/V = 33.6 /22.4 = 1.5 mol 2.00 mol = AYStep 3) mole ratio **<u>1.5 mol of CH₄ x 1 mol of CO_{2(g)} = 1.5 mol of CO₂ = TY</u>** 1 mol of CH_{4(a)} Step 5) % yield = AY/TY x 100 = 2.00 mol/1.5 mol x 100 = 133 % % error = 33.3% (answer becomes positive) Sulphuric acid reacts with 29.4 g of potassium hydroxide and produces 40.5 g of 5. potassium sulphate G R 2 KOH_(aq) \rightarrow 2 HOH (I) + Step 1) H_2SO_4 (ag) + $1 K_2 SO_4 (ag)$ Step 2) n = m/M= 29.4g/56.11g/mol 40.5g/174.27= AY = 0.5239... mol of KOH = 0.23239... mol = AY 0.5239...mol KOH <u>x1mol of K₂SO_{4 (aq)}=</u>0.26195... mol TY Step 3) 2mol of KOH_(ag) Step 4) Both AY and TY are in moles. (m=0.26195x174.27= 45.65...g) Step 5) %yield = AY/TY = 0.23239...mol/0.26195...mol x 100 = 88.7 % (40.5q / 45.65...q = 88.7%) % error = (AY-TY)/TYx100 =(0.26195-0.23239)/ 0.26195x100= 11.3% Describe percent yield and percent error. 6. Percent yield: a ratio between AY and TY as a percent; how much you produce compared to what you should produce.

Percent error: an indication of error (human, instrumental & experimental).

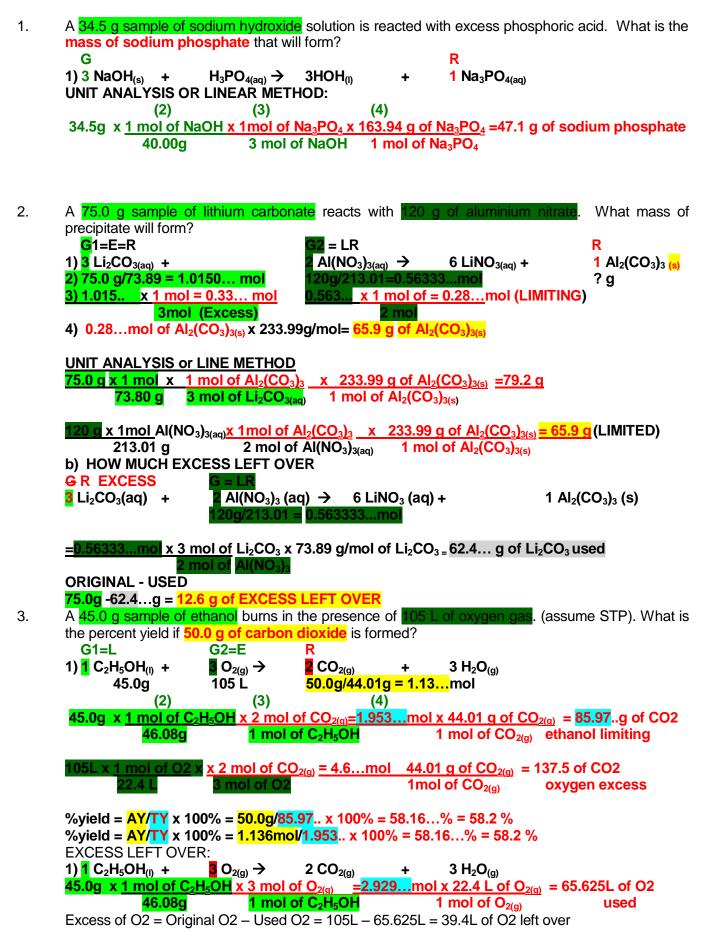
Worksheet 2.7: Limiting Reagents and Percent Yield



STEP 3) x 2 mol SO_{3(g)} = 7.0564... mol 2 mol SO_{2(q)}

x 2 mol SO_{3(g)} =6.8548...mol of SO_{3(a)} (LIMITING) 1 mol of O_{2(a)} STEP 4) v=nV = 6.8548...mol of SO_{3(q)} x 24.8 = 170 L of SO_{3(q)} UNIT ANALYSIS OR LINEAR METHOD:

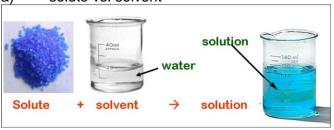
For SO_{2(q)}: 175L x 1 mol of SO_{2(q)} x 2 mol of SO_{3(q)} x 24.8 L of SO_{3(q)} = 174.99 ... L of SO_{3(q)} **24.8 L of SO_{2(g)}** 2 mol of SO_{2(g)} 1 mol of SO_{3(a)}


For $O_{2(q)}$: <u>85L x 1 mol of $O_{2(q)}$ x 2 mol of $SO_{3(q)}$ x 24.8 L of $SO_{3(q)}$ = 170 L of $SO_{3(q)}$ </u> 1 mol of SO_{3(g)} **24.8 L of O_{2(q)} 1 mol of O_{2(q)}**

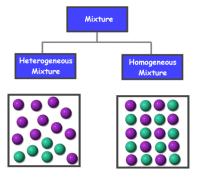
5. A chemist, new to the behaviour of chlorine toward hydrocarbon compounds, tried to make dichloromethane $(CH_2CI_{2(g)})$, by mixing 5500 mL of chloromethane $(CH_3CI_{(g)})$ and 5500 mL of chlorine at STP. Hydrogen chloride gas was a by product. After the reaction was complete, some chloromethane remained unchanged and 12.8 g of dichloromethane was obtained.

а.	Which reactant is excess?
	G1 = E G2 = L R (TY)
STEP 1)	$1 CH_3 CI_{(g)} + 1.5 CI_{2(g)} \rightarrow 1 CH_2 CI_{2(g)} + HCI_{(g)}$
	<mark>5500 mL 5500 mL 12.8 g = AY</mark>
STEP 2) n= v/V	<mark>= 5.5L/22.4L/mol</mark> 5.5L/22.4L/mol
	<mark>=0.2455mol</mark> =0.2455mol
STEP 3)	x 1mol/ <mark>1mol</mark> =0.2455mol x 1 mol/ <mark>1.5 mol</mark> = 0.1636mol (Cl2 is limiting)
b.	How much dichlormethane can theoretically be produced?
STEP 4)	m = nM = <mark>0.1636…mol</mark> x 84.93 g/mol = 13.89… g = <mark>13.9 g = TY</mark>
С.	What is the percent yield?
	%yield = AY/TY x 100% = <mark>12.8 g</mark> / 13.9 g x 100% = 92.086…% = <mark>92.1%</mark>
d.	What is the percent error?
	%error = (TY-AY)/TY x 100% = (13.9 – 12.8)/13.9 x 100% = <mark>7.91 %</mark>

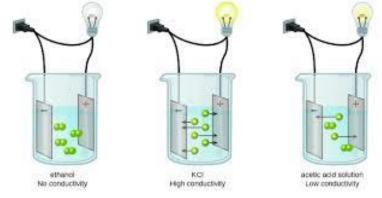
Worksheet 2.8: Stoichiometry Review



4.	When 5.6 x 10^{24} particles of magnesium sulfide reacts with potassium hydroxide, then 500 g of precipitate forms. What is the percent error? G1 R $Ox2=32.00$ 1) 1 MgS _(s) + 2 KOH _(aq) \rightarrow 1 K ₂ S _(aq) + 1 Mg(OH) _{2(s)} $Hx2=2.02$ 5.6 E 24 particles 500g = AY 58.33 (2) (3) (4) 5.6E24parts x1 mol of MgSx1mol of Mq(OH) _{2(g)} x58.33 q Mq(OH) _{2(s)} = of Mg(OH) _{2(AY)} 6.02E23parts 1 mol of C ₂ H ₅ OH 1 mol of Mg(OH) _{2(g)}
	%error = (TY- <mark>AY</mark>)/TY x 100% = <mark>500g</mark> /85.97 x 100 = 58.15% = 58.2 %
5.	When 36.9 L of chlorine gas (SATP) reacts with 36.8 g of magnesium oxide, 38.9 g of magnesium chloride formed. What mass of magnesium chloride did you expect? (TY) G1 G2 R 1) 2 Cl _{2(g)} + 2 MgO _(s) \rightarrow 1 O _{2(g)} + 2 MgCl _{2(s)} 36.9L 36.8g 38.9 g = AY (2) (3) (4) 36.9L x 1 mol of Cl ₂ x 2 mol of MgCl _{2(s)} x 95.21 g of MgCl _{2(g)} =70.831 g of MgCl ₂ 24.8L 2 mol of Cl ₂ 1 mol of MgCl _{2(s)} Cl ₂ is excess
	36.8g x 1 mol of MgO x x2mol of MgCl _{2(s)} x 95.21 g of MgCl _{2(g)} = 86.919g=86.9g of MgCl ₂ (TY) 40.31 g 2 mol of MgO 1mol of MgCl _{2(g)} MgO excess
6.	EXCESS LEFT OVER: G1= E=R G2 = LR 1) Cl _{2(g)} + MgO _(s) \rightarrow 1 O _{2(g)} + 1 MgCl _{2(s)} 36.9L x 1 mol of Cl ₂ x 2 mol of MgO x 24.8 L of Cl _{2(g)} =22.64L of Cl ₂ used 24.8L 2 mol of Cl ₂ 1 mol of Cl _{2(g)} Excess of Cl2 = Original – Used = 36.9L – 22.64L = 14.3 L of Cl ₂ left over. When 24.5 g of iron(II) chloride reacts with 35.0 g of zine, 7.2 g of iron was formed. What is the percent yield and percent error is this experiment? G1=L G2=E Mser R 1 FeCl _{2(aq)} + Zn _(s) \rightarrow Fe _(s) + ZnCl _{2(aq)} 7.2 g = AY (2) (3) (4) G1: 24.5gx1 mol of FeCl ₂ x mol of Fe x 55.85g of Fe = 10.79546g of Fe (TY) 126.75g 1 mol of FeCl ₂ 1 mol of Fe = 29.8.g of Fe
	65.41g 1 mol of Zn 1mol of Fe Zn is excess %yield = <mark>AY/TY</mark> x 100% = 7.2g/10.795g x 100% = 66.7% %error = (TY-AY)/TY x 100% = (10.7g - 7.2g)10.7g x100% = 33.3%
	EXCESS LEFT OVER: 1 FeCl _{2(aq)} + 1 Zn _(s) \rightarrow 1 Fe _(s) + ZnCl _{2(aq)} 24.5gx1 mol of FeCl₂ x 1 mol of Zn x 65.41g of Zn = 12.64 g of Zn used 126.75g 1 mol of FeCl₂ Excess Zn = Original – Used Excess Zn = 35.0 g – 12.64g = 22.4 g left over


Excess Zn = 35.0 g – 12.64...g = 22.4 g left over

Worksheet 3.1 – Solution Terminology and Theory


Illustrate (with a drawing) the difference between:
 a) solute vs. solvent

b) homogenous mixture vs. heterogenous mixture

c) electrolyte vs. non-electrolyte

- 2. Illustrate two factors that affect the rate of solubility.
 - 1) Agitation
 - 2) Temperature
 - 3) Surface area

- Illustrate how the following solids dissolve in water
 Glucose
 - b) copper (II) sulphate
 - c) hydrochloric acid
- 4. Many reactions only occur when the reactants are dissolved in water. Why?

Chemistry 20 Worksheets

1. What is the molar concentration of an electroplating solution in which 1.50 mol of copper (II) sulphate are dissolved in 2.00 L of water?

C=n; C=1.50mol V 2.00L C=0.750 mol/L

- 2. What is the molar concentration of a solution in which 0.240 mol of washing soda, sodium carbonate decahydrate, is dissolved in 480 mL of water to make soft water solution? C=n/V; C=0.240 mol/0.480 L; C=0.500 mol/L
- What is the molar concentration of 500 mL of a solution that contains 12.7 g of swimming pool 3. chlorinator, $Ca(OCI)_2$? Ca = 40.08Ox2 = 32.00

1) n=m/M; n=12.7/142.98g/mol; n=0.0888...mol

2) C=n/V; C=0.0888...mol / 0.500L; C=0.178 mol/L

A given sample of household ammonia contains 156 g of ammonia dissolved in water to form a 2.00L 4. N = 14.01 solution. What is the molar concentration of the ammonia solution? 1) n=m/M; n=156g/17.04 g/mol; n=9.154...mol Hx3=3.03

2) C=n/V; C=9.154...mol /2.00L; C=4.58 mol/L

Find the number of moles of sodium phosphate in 2.00L of a 0.100 mol/L sodium phosphate cleaning 5. solution.

n=CV; n=0.100mol/L x 2.00 L; n=0.200mol

How many moles of potassium sulphate are there in 500 mL of a 0.242 M solution used to remove rust 6. stains?

n=CV; n=0.242mol/L x 0.500L; n=0.121 mol

7. What mass of sodium bicarbonate must be added to a 2.50 L bowl to obtain a necessary 0.150 mol/L solution? Na = 22.99 H = 1.01

1)	1) n=CV; n=0.150mol/L x 2.50L; n=0.375 mol					
2) m=nM; m=0.375mol x		84.01g/mol=31.5 g				

8. What volume of a 0.075 mol/L solution would contain the necessary 1.10 mol of sodium phosphate used to remove radiator scales?

V=n/C: V=1.10mol/0.075 mol/L; V=15 L

- What mass of sodium silicate is necessary to prepare 10.0 L of a 0.00500 mol/L water softening 9. solution?
- How many litres of 0.800 mol/L solution would contain 119.2 g of NaOCI? 10. 1) n=m/M; n=119.2g/74.44g/mol; n=1.60...mol Na=22.99

O=16.00
<u>CI=35.45</u>
74.44g/mol

142.98q/mol

Clx2 =70.90

C = 12.01 Ox3=48.00 84.01 g/mol

17.04 g/mol

Worksheet 2.3: Making solutions and dilutions

- 1. A scientist has a container with solid sodium hydroxide and a container of 5.00 mol/L sodium hydroxide.
 - a) What are the two ways that the scientists can use to make a solution with a specific volume and concentration?

Make a solution by mixing a solute of specific mass with a specific volume of solvent (water)

OR make a dilution by adding water to a solution that is already made.

b) What are two ways that the scientist can dilute the 5.00 mol/L solution?

Evaporate the solvent and then remove some solute and add the solvent back OR add more solvent to a small portion of the solution.

- Describe the steps you would take to make 100 mL of a 0.200 mol/L sodium chloride solution from salt 2. crystals. Include the equipment and calculations you would make. Remember this is not a reaction.
 - 1) Calculate moles n=CV; n=0.200 mol/L x 0.100 L; n=0.0200 mol Na=22.99
 - 2) Calculate mass m=nM; m=0.0200mol x 58.44g/mol; m=1.17g CI=35.45 58.44 g/mol
 - 3) Weight with a scale; Mix in beaker with 50 mL of water.
 - 4) Place solution in a 100 mL volumetric flask and fill to the meniscus/calibration line
 - 5) Cap and mix
- 3. Describe the steps you would take to make 250 mL of a 0.453 mol/L solution of copper (II) sulphate from solid copper (II) sulphate pentahydrate. Include equipment and calculations.
 - 1) Calculate the moles n= CV; n=0.453 mol/L x 0.250 L; n=0.113...mol Cu=63.55
 - 2) Calculate the mass m=nM; m=0.113...mol x 249.71g/mol; m=28.3g
 - 3) Wieght it; mix in beaker with about 125 mL
 - 4) Place in a 250 mL volumetric flask and fill to the meniscus/calibration line
 - 5) Cap and mix

Equipment: Calculator, weight scale, 250 mL volumetric flask, 125 mL beaker, eye dropper, cap

- Describe the steps you would take to make 100 mL(V2) of a 0.50 mol/L (C2) sucrose solution from a 4. container of 2.10 mol/L(C1) sucrose solution. Include equipment and calculations.
 - 1) Calculate volume that needs to be removed. $V_1=C_2V_2/C_1$; V1=0.50mol/Lx0.100L/2.10mol/L V1=0.0238; V1=24mL
 - 2) Remove 24 mL with a graduated pipet
 - 3) Place in a 100 mL volumetric flask; fill to calibration line; cap and mix
- 5. Describe the steps you would take to make 500 mL(V2) of a 0.900 mol/L(C2) sulphuric acid from a 1.50 L(V1) container of 6.00 mol/L(C2) sulphuric acid solution. Include equipment and calculations.
 - 1) Calculate volume; V1=C2V2/C1; V1=0.900mol/L x 0.500L/6.00mol/L =0.0750L or 75.0 mL
 - 2) Remove 75 mL with a volumetric pipet.
 - 3) Place in a 500 mL volumetric flask; fill with 425ml of water to calibration line and cap and mix

- 6. What is the final concentration of a cleaner if 10 L(V1) of concentrated sodium hydroxide (19.1 mol/L)C1) is diluted to 400 L(V2)?
 C2 = C1V1/V2; 19.1mol/L x 10 L / 400L = 0.48 mol/L
- 7. What is the mass of baking soda (sodium hydrogen carbonate) needed to make 2.5 L of a 1.00mol/L solution?
 - 1) n=CV; 1.00 mol/L x 2.5 L; n=2.5 mol
 - 2) m=nM; 2.5mol x 84.01 g/mol; m=2.1 x 10² g or 0.21 kg
- 8. If 2.0 L of water is added to 1.0 L of a 0.250 mol/L solution of potassium hydroxide what is the final concentration. (Be Careful)
 C2=C1V1/V2; C2=0.250mol/L x 1.0L /3.0 L; C2 = 0.083 mol/L
- 9. CHALLENGE: If 1.50 L of a 12.4 mol/L solution of hydrochloric acid was mixed with 300 mL of a 6.10 mol/L solution of hydrochloric acid, then what would be the final concentration.
 Cnew=ntotal/Vtotal; Cnew = (1.50Lx12.4mol/L) + (6.10 mol/L x 0.300L)/ (1.50L + 0.300L) Cnew=(18.6 mol + 1.83 mol)/1.8 L; Cnew = 11.4 mol/L
- 10. CHALLENGE: How much water is added to 50.0 mL(V1) of a 0.500 mol/L(C1) solution to make a 0.100 mol/L(C2) solution?
 V2=C1V1/C2; V2=0.500mol/L x 0.050L/0.100mol/L; V2 = 250 mL

Vwater = V2-V1; Vwater = 250 ml - 50 mL; Vwater = 200 mL

Worksheet 2.4: Dissociation and ionization reactions

Name: _____

- 1. What type of compounds dissociate? What type of compounds ionize? Ionic Acids & molecular gases
- 2. Write dissociation or ionization reactions for the following chemicals after they are mixed with water. Show the physical states of all species involved. Use modified ionization reactions when necessary.
 - a) Solid hydrochloric acid HCl_(s) $^{H2O(l} \rightarrow H+_{(aq)} + Cl-_{(aq)}$

 $\mathsf{HCI}_{(s)} + \mathsf{H}_2\mathsf{O}_{(l} \rightarrow \mathsf{H}_3\mathsf{O}_{(aq)} + \mathsf{CI}_{(aq)}$

- b) Solid strontium hydroxide $Sr(OH)_{2(s)} \rightarrow Sr^{2+}_{(aq)} + 2OH^{-}_{(aq)}$
- c) Solid copper (II) sulphate pentahydrate $CuSO_4 5H_2O_{(s)} \rightarrow Cu^{2+}_{(aq)} + SO_4^{2-}_{(aq)} + 5H_2O_{(l)}$
- d) Solid sodium bicarbonate (hydrogen carbonate $NaHCO_{3(s)} \rightarrow Na^{+}_{(aq)} + HCO_{3^{-}_{(aq)}}$
- e) ammonia gas (acid and bases) $NH_{3(g)} + H_2O_{(l)} \rightarrow NH_4^+_{(aq)} + OH_{(aq)}$
- 3. For each of the following write dissociation or ionization equations and find the concentration of each ion.

a)	0.90 mol/L sc Na ₃ PO _{4(s)}	olution of sodium phos → 3Na+ _(aq)	phate +	PO4 ³⁻	(aq)	
	0.90mol/L	x 3mol of Na/1mol =2.7mol/L	of Na₃PO₄		ol of PC mol/L	0₄ ³⁻ /1mol of Na₃PO₄
b)	0.143 mol/L s HNO _{3(aq)}	solution of nitric acid + $H_2O_{(l)}$ \rightarrow	H ₃ O+ _(aq) =0.143 mol/L		NO ₃ (4 =0.14	^{aq)} 3 mol/L
c)	0.0135 mol/L Ca(OH) _{2(s)} 0.0135mol/L	solution of calcium h →	ydroxide Ca ²⁺⁽ _{aq)} =0.0135 mol/	+ /L	2OH⁻ _{(á} x=0.02	^{aq)} 270mol/L
d)	0.150 mol of HF _(g)	hydrogen fluoride gas + H₂O _(g)	bubbled into 1. \rightarrow $H_3O^+_{(z)}$		water +	F- (aq)

- 4. What is the concentration of chloride ions in a solution prepared by dissolving 800 g of zinc chloride in 4.50 L of water?
 - 1) n=m/M; n=800/136.28g/mol; n=5.87...mol

2) ZnCl_{2(s)} → Zn 2+_(aq) + 2Cl-_(aq) 5.87 mol 11.74...mol

C=n/V; C=2.61mol/L

- 5. What is the mass of calcium chloride required to prepare 2.000 L of 0.120 mol/L chloride ions? 1) n=CV; -.120mol/L x 2.00L = 0.240mol
 - 2)CaCl_{2(s)} \rightarrow Ca2+_(aq) + 2Cl-_(aq)
 - 3) 0.240molx1mol/2mol

=0.120mol

4)m=nM; m=0.120mol x 110.98g/mol; 13.3 g

6. What is the final concentration if 2.0 L of <u>water</u> is added to 4.50 L of a 0.89 mol/L solution of sodium chloride?
 C2=C1V1/V2; C2=0.89mol/L x 4.50L/6.50L; C2=0.62mol/L

Worksheet 4.5: Net Ionic Equations

For the following reactions, write the nonionic equation, the total ionic equation and the net ionic equation.

1. Aqueous solutions of sodium sulphate and barium bromide are mixed. NON IONIC: $Na_2SO_{4(ag)} + Ba(Br)_{2(ag)} \rightarrow BaSO_{4(s)} + 2NaBr_{(ag)}$

TOTAL IONIC: $2Na^{+}_{(aq)} + SO_{4}^{2-}_{(aq)} + Ba^{2+}_{(aq)} \xrightarrow{2}Br^{-}_{(aq)} \rightarrow BaSO_{4(s)} + 2Na^{+}_{(aq)} + 2Br^{-}_{(aq)}$ NET IONIC: $SO_{4}^{2-}_{(aq)} + Ba^{2+}_{(aq)} \rightarrow BaSO_{4(s)}$

 A lead (II) nitrate solution reacts with sodium sulphide solution NON IONIC: Pb(NO3)2 (aq) + Na2S(aq) → 2 NaNO3(aq) + PbS(s)

Total IONIC: Pb²⁺_(aq) + 2NO3⁻_(aq) + 2Na⁺_(aq) + S²⁻_(aq) \rightarrow 2Na⁺_(aq) + 2NO3⁻_(aq) + PbS_(s) NET IONIC: Pb²⁺_(aq) + S²⁻_(aq) \rightarrow PbS_(s)

3. Sulphuric acid is neutralized by a potassium hydroxide solution NON IONIC: $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2HOH_{(l)}$ TOTAL IONIC: $2H^+_{(aq)} + SO_4^{2^-}_{(aq)} + 2K^+_{(aq)} + 2OH^-_{(aq)} \rightarrow 2K^+_{(aq)} + SO_4^{2^-}_{(aq)} + 2HOH_{(l)}$ NET IONIC: $2H^+_{(aq)} + 2OH^-_{(aq)} \rightarrow 2HOH_{(l)}$ $H^+_{(aq)} + OH^-_{(aq)} \rightarrow HOH_{(l)}$

4. Hydrochloric acid is added to a solution of barium hydroxide

5. Magnesium metal is added to an aqueous solution of hydrogen bromide NON IONIC: $Mg_{(s)} + 2HBr_{(aq)} \rightarrow H_{2(g)} + MgBr_{2(aq)}$ TOTAL IONIC: $Mg_{(s)} + 2H^{+}_{(aq)} + 2Br^{-}_{(aq)} \rightarrow H_{2(g)} + Mg^{2+}_{(aq)} + 2Br^{-}_{(ag)}$ NET IONIC: $Mg_{(s)} + 2H^{+}_{(aq)} \rightarrow H_{2(g)} + Mg^{2+}_{(aq)}$ 7. Zinc reacts with acetic acid (vinegar) NON IONIC: $Zn_{(s)} + 2CH_3COO\underline{H}_{(aq)} \rightarrow H_{2(g)} + Zn(CH_3COO)_{2(aq)}$ TOTAL IONIC: $Zn_{(s)} + 2CH_3COO^{-}_{(aq)} + 2H^{+}_{(aq)} \rightarrow H_{2(g)} + Zn^{2+}_{(aq)} + 2CH_3COO^{-}_{(aq)}$ NET IONIC: : $Zn_{(s)} + 2H^{+}_{(aq)} \rightarrow H_{2(g)} + Zn^{2+}_{(aq)}$

8. Bromine is added to a magnesium iodide solution $Br_{2(l)} + Mgl_{2(aq)} \rightarrow l_{2(s)} + MgBr_{2(aq)}$

 $\begin{array}{rcl} \mathsf{Br}_{2(l)}+\mathsf{Mg}^{2*}{}_{(aq)}&+2\mathsf{I}_{(aq)}^{} \rightarrow \mathsf{I}_{2(s)}+\mathsf{Mg}^{2*}{}_{(aq)}+2\mathsf{Br}_{(aq)}^{}\\ \mathsf{Br}_{2(l)}&+2\mathsf{I}_{(aq)}^{} \rightarrow \mathsf{I}_{2(s)}+2\mathsf{Br}_{(aq)}^{}\end{array}$

Worksheet 2.6: Solution Stoichiometry

1. A 200 mL solution of potassium phosphate reacts with 100 mL of 0.150 mol/L iron (III) sulphate solution. What is the concentration of the potassium phosphate solution?

2. If 230 mL of a 1.00 mol/L solution of aluminium chlorate is reacted with sufficient lithium hydroxide solution, what mass of precipitate is formed?

m=17.9 g

3. Predict the mass of magnesium metal that will be required to react with 44.0 ml of 0.200 mol/L hydrochloric acid.

- 4. What volume of 1.00 mol/L HNO_{3(aq)} is required to react completely with 1.20g of LiOH_(aq)? 1) HNO_{3(aq)} + LiOH_(aq) \rightarrow LiNO_{3(aq)} + HOH_(l)
 - 2) V=? n=1.20g/23.95g/mol
 - V n=0.050104mol
 - 3) X/1mol = 0.050104...mol/1mol

X=0.050104...mol

4) V=n/C; V=0.050104...mol/1.00mol/L

V=0.0501L or 50.1 mL

5. A 100 ml sample of sodium sulphide solution is completely reacted with 50.0 ml of 0.250 mol/L lead (II) nitrate solution. Predict the concentration of the $Na_2S_{(aq)}$?

6. 500 ml of 0.150 mol/L cobalt (II) nitrate solution is reacted with 500 ml of 0.250 mol/L of sodium hydroxide solution producing 4.77 g of precipitate. Find the % yield for this reaction.

Co(NO ₃) _{2(aq)}	+	2NaOH _(aq) →	2NaNO _{3(aq)}	+	Co(OH) _{2(s)}
n=CV		n=CV			n=m/M
n=0.150mol/Lx0.50	00Ln=0.2	250mol/Lx0.500L	n=4.7	7 7g/92 .9	95g/mol
<u>n=0.075mol</u>		n=0.125mol			n=0.0513mol
0.075mol/1mol	=	x/2 mol			
		x=0.150mol			
		0.125 < 0.150 LIMIT	ING		
		0.125mol/2mol		=	x/1mol
					x=0.0625 (5.809g)

% yield = A/T x 100; % yield = 0.0513...mol/0.0.0625 mol x 100; % yield = 82.1%

7. CHALLENGE: Predict the final mass of a 500 g bar of lead that is allowed to react completely with 2.00 L of 2.00 mol/L HCl.

 $Pb_{(s)}$ +
 $2HCl_{(aq)}$ \rightarrow $H_{2(g)}$ +
 $PbCl_{2(s)}$

 500g
 n=CV

 n=2.00mol/L x 2.00L

 n=4.00mol

 x/1mol =
 4.00mol/2mol

 x=2.00mol

m=nM; m=2.00mol x 207.19g/mol; m=414.38 g

mfinal = 500 - 414.38 = 85.6 g

8. A 75.0 mL sample of 0.25 mol/L silver chlorate solution reacts with 19.0 mL of 0.50 mol/L copper (II) sulphate solution. What is the concentration of the solution produced? (NOTE: Find out what the <u>total</u> volume of the solution produced.)

1) 2AgClO _{3(aq)} +	+	CuSO _{4(aq)}	\rightarrow	$Cu(CIO_3)_{2(aq)} + Ag_2SO_{4(s)}$		
2) n=CV		n=CV		C=?		
n=0.25mol/Lx0.075L	n=0.50mol/Lx0.019L					
<u>n=0.01875 mol</u>	<u>n=0.0095 mol</u>					
0.01875/2mol =	=	x/1mol				
		x=0.009375mc	bl			
0.0095>0.009375mol EXCESS						
0.01875/2mol			=	x/1mol		
x=0.009375mol						
				C=n/V;		

C=0.009375mol/0.094L

C=0.0997; C=0.10 mol/L

- 1. Answer the following questions
 - a) How do solutions differ from heterogeneous mixtures? Solutions are uniform and appear as one substance – heterogenous do not.
 - b) How do the number of molecules of C₁₂H₂₂O₁₁ in 250 mL of a 1.5 mol/L solution of C₁₂H₂₂O₁₁ compare to the number of molecules of C₆H₁₂O₆ in 250 mL of a 1.5 mol/L C₆H₁₂O₆?
 The number of molecules is the same (n=CV); the mass is different
 - c) What is the term used to describe two liquids which will **NOT** mix with each other? immiscible
 - d) What are two factors that affect the amount of solute that dissolves and two factors that affect the rate of dissolving?
 Amount: temperature, pressure
 Rate: temperature, surface area, agitation
- 2. Write the equation for each of the following dissolving in water. Use modified Arhenius theory.
 - a) Hydrogen chloride gas $HCI_{(g)} + H_2O_{(g)} \rightarrow H_3O^+_{(aq)} + CI^-_{(aq)}IONIZE$
 - b) Solid aluminum nitrate AI(NO₃)_{3(s)} \rightarrow AI³⁺_(aq) + 3NO₃⁻_(aq) DISSOCIATE
 - c) Solid sucrose $C_{12}H_{22}O_{11(s)} \rightarrow C_{12}H_{22}O_{11(aq)}$ DISSOLVE
 - d) Aqueous nitric acid $HNO_{3(aq)} + H_2O_{(g)} \rightarrow H_3O^+_{(aq)} + NO_3^-_{(aq)}IONIZE$
- 3. Determine the concentration of each of the following solutes in the solution described.
 - a) 0.725 mol of cobalt (II) nitrate in 1.35 L of solution. C=n/V; C=0.725mol/1.35L; C=0.537 mol/L
 - b) 15.0 g of barium sulphate in 125 mL of solution. Ba=137.33 n=m/M; n=15.0g/233,39g/mol; n=0.0642...mol S=32.06

C=n/V; C=0.065...mol/0.125L; C=0.514mol/g Ox4=64.00/233.39g/mol

c) 1.85×10^{22} molecules of ammonia gas in 400 mL of solution. n=p/P; n=1.85 x 10^{22} /6.02 x 10^{23} ; n=0.0307..mol

C=n/V; C=0.0307...mol/0.400L; C=0.0768 mol/L

4. Write the dissociation equation and calculate the concentration of each of the ions produced in 1.25 mol/L solution of barium chloride.

BaCl _{2(s)}	\rightarrow	Ba ²⁺ (aq)		+	2Cl⁻ _(aq)
1.25mol/L/1r	nol=	x/1mol	=	x/2n	nol
		x=1.25 mol/L		x=2.	50 mol/L

5. Write the dissociation equation and determine the concentration of the solution if 1.26 mol/L of [Na⁺] is found in a sodium phosphate solution.

Na₃PO_{4(s)} 3Na⁺_(aq) PO₄³⁻(aq) + \rightarrow

X/1mol = 1.26 mol/L/3mol

x=0.420mol/L

6. CHALLENGE: What is the [Cl⁻] in a solution made by mixing 200 mL of 0.300 mol/L sodium chloride solution with 350 mL of 0.250 mol/L calcium chloride solution? $NaCl_{(s)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$

$CaCl_{2(s)} \rightarrow Ca^{2+}{}_{(aq)} + 2Cl^{-}{}_{(aq)}C=ntotal/Vtotal$

n=CV;	n=CV; n=0.250mol/Lx	C=0.235mol/0.550L	
n=0.0600mol/1mol=x/1mol	n=0.0875mol/1mol	= x/2mol	C=0.427 mol/L
x=0.0600mol	x=	:0.175 mol	

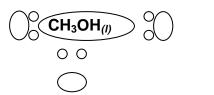
Write net ionic equations for the following reactions. (3 marks)

a) lead nitrate solution is mixed with sodium hydroxide

 $\begin{array}{l} \mathsf{Pb}(\mathsf{NO}_3)_{2(aq)} + 2\mathsf{NaOH}_{(aq)} \rightarrow 2\mathsf{NaNO}_{3(aq)} + \mathsf{Pb}(\mathsf{OH})_{2(s)} \\ \mathsf{Pb}^{2+}_{(aq)} + 2\mathsf{NO}_3^{-}_{(aq)} + 2\mathsf{Na}^+_{(aq)} + 2\mathsf{OH}^-_{(aq)} \rightarrow 2\mathsf{Na}^+_{(aq)} 2\mathsf{NO}_3^{-}_{(aq)} + \mathsf{Pb}(\mathsf{OH})_{2(s)} \\ \mathsf{Pb}^{2+}_{(aq)} + 2\mathsf{OH}^-_{(aq)} \rightarrow \mathsf{Pb}(\mathsf{OH})_{2(s)} \end{array}$

b) barium nitrate reacts with potassium sulphide $Ba(NO_3)_{2(aq)} + K_2S_{(aq)} \rightarrow 2KNO_{3(aq)} + BaS_{(aq)}$

 $Ba^{2+}_{(aq)} + 2NO_{3}^{-}_{(aq)} + 2K^{+}_{(aq)} + S^{2-}_{(aq)} \rightarrow 2K^{+}_{(aq)} + 2NO_{3}^{-}_{(aq)} + Ba^{2+}_{(aq)} + S^{2-}_{(aq)}$


NO NET IONIC EQUATION

- c) nitric acid reacts with barium hydroxide

 $\begin{array}{ll} 2\mathsf{HNO}_{3(aq)} &+ \mathsf{Ba}(\mathsf{OH})_{2(aq)} \stackrel{\checkmark}{\rightarrow} \mathsf{Ba}(\mathsf{NO}_{3})_{2(aq)} + 2\mathsf{HOH}_{(l)} \\ 2\mathsf{H}^{+}_{(aq)} + 2\mathsf{NO}_{3}^{-}_{(aq)} &+ \mathsf{Ba}^{2+}_{(aq)} + 2\mathsf{OH}^{-}_{(aq)} \stackrel{\checkmark}{\rightarrow} \mathsf{Ba}^{2+}_{(aq)} + 2\mathsf{NO}_{3}^{-}_{(aq)} + 2\mathsf{HOH}_{(l)} \end{array}$

$$H_{(aq)} + OH_{(aq)} \rightarrow HOH_{(l)}$$
 (Don't forget to reduce)

7. Draw a diagram describing how methanol is dissolved in water. (1 mark)

- Predict whether the following solutes are electrolytes or nonelectrolytes: 8.
 - a) nitrogen monoxide nonelectrolyte (molecular)
 - b) hydrofluoric acid electrolyte (acid)
 - c) magnesium hydroxide nonelectrolyte (ionic BUT not aqueous)
 - d) potassium hydrogen carbonate electrolyte (ionic & aqueous)
- 9. A scientists wants to make 100 mL of a 0.150 mol/L sodium hydroxide solution. He has 100 g of solid sodium hydroxide and he has 1.00 L of a 2.25 mol/L sodium hydroxide solution. Describe step by step the two ways that he could make his 0.150 mol/L solution. Include the sample calculations and equipment.

Method I - from solid **Method II - dilution** 1) Find moles; n=CV; 0.150x0.100=0.0150 1) Find volume; V₁=C₂V₂/C₁=0.150x0.100/2.25=6.67ml 2) Find mass: m=nM; 0.0150x40.00=0.600g 2) Remove 6.67mL with a graduated pipet 3) Weigh on a scale 3) Place in a 100 mL volumetric flask and fill to line

- 4) Mix 0.600g in 50 ml of water 4) Cap and mix
- 5) Place in 100 mL volumetric flask

and fill to calibaration line. Cap and mix

10. A 20.0 g sample of lead (II) nitrate is mixed in 1.00 L of water. The lead (II) nitrate solution then reacts with a 1.00 L of a 0.100 mol/L solution of rubidium iodide. If 20.0 g of precipitate forms, what is the percent yield?

Worksheet 2.8: Introduction to Acids & Bases

- 1. Safety is very important when working with acids. Describe what the student should do in the following situations.
 - a) A student drops a 100 mL beaker with 50 mL of hydrochloric acid and spills the acid onto the floor.

Report the accident to a teacher. Place baking soda until it stops bubbling. (If you have no baking soda, dilute the acid with water.)

- A student drips a couple of drops of sodium hydroxide solution onto his hand.
 Report the incident to a teacher. Wash the sodium hydroxide off with cold water.
- c) A beaker with Ba(OH)₂ tips over onto the lab bench.
 Report the incident to a teacher. Place vinegar (acetic/ethanoic acid) onto the base. (If you have no vinegar, dilute the base with water.)
- A student would like to dilute an acid and would like to know if he should add the acid to the water or the water to the acid
 Always add acid to water (A to W).
- 2. WHMIS symbols help communicate dangers.
 - a) WHMIS stands for Workplace Hazardous Materials Information System
 - b) The symbol that would be associated with a beaker of base that corrodes metal is

Corrosive material

c) Acids and bases can cause immediate and serious damage to a person's skin. The WHMIS symbol related to this is

Material causing immediate and serious toxic effect

d) Some acids react with oxygen. The WHMIS symbol found on a bottle of this acid would be

- 3. A person would like to make 100 mL 1.00 mol/L solution of NaOH. Describe the steps the student would use. Include the calculations.
 - 1) Calculate the moles: n=CV; n=1.00mol/L x 0.100L; n=0.100mol
 - 2) Calculate mass: m=nM; m=0.100mol x 40.00g/mol; m=4.00g
 - 3) Weigh with scale; mix in beaker with 50 mL of water.
 - 4) Place in 100 mL volumetric flask, fill to calibration line, cap & mix.
- 4. A person would like to dilute a 12.1 mol/L solution of HCl and make a 250 mL 3.00 mol/L solution. Describe the steps the student would use. Include the calculations.
 - 1) Find the volume; v1=C2V2/C1; V1=3.00mol/Lx 0.250L/12.1mol/L: V=62.4mL
 - 2) Remove it with graduated pipet.
 - 3) Place in 250 mL volumetric flask; fil to calibration line; cap & mix
- 5. Indicators change color to indicate whether you have an acid or base. Litmus paper and bromothymol blue are two common indicators. Complete the following table for these indicators.

<u>PH</u>	Litmus Paper color	Bromothymol Blue color
3	Red	yellow
7	No change	Green
10	Blue	Blue

6. What is one property that is similar between acids and bases? Both electrolytes, both dissolve in water (aqueous)

7. What is one property that is different between acids and bases? **PH, taste, touch, reactions**

- 8. Complete the following acid or base reactions.
 - a) sulphuric acid is neutralized by potassium hydroxide. Identify the "salt" in the reaction. $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2HOH_{(l)}$

salt

b) hydrochloric acid reacts with magnesium $2\text{HCl}_{(aq)} + \text{Mg}_{(s)} \rightarrow \text{MgCl}_{2(aq)} + \text{H}_{2(g)}$

salt

c) self ionization of water

$$H_2O_{(l)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + OH^-_{(aq)} OR H_2O_{(g)} \rightarrow H^+_{(aq)} + OH^-_{(aq)}$$

No salt

Worksheet 2.9: Acid & Base Calculations

- 1. A 1.00 L solution of 1.50 mol/L perchloric acid is dilluted by adding 500 mL of water. What is the hydronium concentration of the dilluted solution? V2= V1 + Vwater=1.00L + 0.500L $HCIO_{4(aq)}$ + $H_2O_{(q)} \rightarrow$ $H_3O^+_{(aq)}$ CIO_{4 (aq)} + C2=C1V1/V2 C2=1.50mol/Lx1.00L/1.50L C2=1.00mol/L 1.00mol/L/1mol X/1mol = X=1.00mol/L 2. A 250mL solution of 3.56 mol/L barium hydroxide is sitting on the counter in the lab. Help a chemistry 20 student determine the hydronium concentration of the solution. Ba(OH)_{2(s)} \rightarrow Ba2+(aq) 20H-(aq) + n=CV; n=3.56 x 0.250 = 0.89 mol X 2mol/1mol =1.78mol C = n/V; C = 1.78mol/0.250L = 7.12mol/L H3O+ = Kw/[OH-]; H3O+ = 1E-14/7.12 = 1.40E-15 mol/L solution of nitric acid ionizes. What is the hydroxide ion concentration? 3. A 1 HNO_{3(aq)} ÷ $H_2O_{(q)} \rightarrow$ $H_3O^+_{(aq)}$ + $NO_{3}(aq)$ 1.00 mol/L X1/1mol; X=1.00 mol/L $[OH-] = kw/[H_3O^+_{(aq)}]$ = $1.00 \times 10^{-14} (mol/L)^2 / 1.00 mol/L;$ [OH-] = $1.00 \times 10^{-14} mol/L$ 4. A student takes 11.6 grams of strontium hydroxide and adds it to 3.00 litres of water. What is the hydronium concentration?
- 5. A solution contains 1.67 x 10⁻¹⁴ mol/L of hydronium ions. Determine the mass of barium hydroxide that was added to 1.00 L of water to make this solution. Ba(OH)_{2(s)} \rightarrow Ba2+_(aq) + 2OH-_(aq) [OH-] = kw/[H₃O⁺_(aq)] = 1.00 x 10⁻¹⁴(mol/L)²/1.67 x 10⁻¹⁴mol/L X1mol/2mol 0.5988...mol/L X=0.2994...mol/L n=CV; n=0.2994 x 1L=0.2994...mol m=nM; m= 0.2994...mol x 171.35 g/mol

6. What is the concentration of hydroxide ions found in a 1.00 L solution of 2.00 mol/L potassium hydroxide?

- 7. What is the hydroxide concentration of a 1.00 L solution of 2.50 mol/L hydrobromic acid? HBr_(aq) + H₂O_(g) \rightarrow H₃O⁺_(aq) + Br⁻_(aq) 2.50 mol/L x 1mol/1mol X=2.50 mol/L [OH-] = kw/[H₃O⁺_(aq)] = 1.00 x 10⁻¹⁴(mol/L)²/2.50mol/L [OH-] = 4.00 x 10⁻¹⁵mol/L
- 8. What is the hydronium concentration when 1.00 mol/L of barium hydroxide dissociates

9. 6.02×10^{-22} particles of sulphuric acid ionize into hydrogen sulphate ions in 1.00 L of water. What is the hydroxide concentration of the solution? $H_2SO_{4(aq)} + H_2O_{(g)} \rightarrow H_3O^+_{(aq)} + HSO_4^-_{(aq)}$ n=p/P $n=6.02 \times 1022/6.02 \times 1023$ n=0.1...mol C=n/V = 0.1...mol/1.00L 0.100mol/L x 1mol/1mol; X=0.100 mol/L $[OH-] = kw/[H_3O^+_{(aq)}]$ $= 1.00 \times 10^{-14} (mol/L)^2/0.100mol/L;$

 $[OH-] = 1.00 \times 10^{-13} \text{mol/L}$

10. A solution contains 3.45 x 10⁻¹² mol/L of hydroxide ions. What is the concentration of the hydrochloric acid solution that contain these hydroxide ions?

Worksheet 2.10: Acid & Base Review

1. The concentration of hydroiodic acid is 1.73×10^{-3} mol/L. What is the pH and the pOH? $H_{(aq)}$ + $H_2O_{(g)}$ + $H_3O^+_{(aq)}$ + $\Gamma_{(aq)}$

1.73 x 10-3 mol/L/1mol	=	X/1mol
		X=1.73 x 10-3 mol/L
		PH = -log (1.73 x 10-3 mol/L)
		PH = 2.76195 (2.762)
		POH = 14-pH = 11.238

2. What is the hydronium concentration and hydroxide concentration of a 2.47 x 10 ⁻² mol/L solution of thallium hydroxide?

3. Complete the following table (Significant digits are important):

рН	[H⁺] or [H₃O+]	[OH ⁻]	рОН	A/B/N
14 -4.56 OR -log(3.6E-10) = 9.44	1E-14/2.8E-5 =3.6E-10mol/L OR 10 ^{-9.44}	=10 ^{-4.56} = 2.8E- 5mol/L OR 1E-14/3.6E-5	4.56	В
2) 14-4.910 =9.090	8.13 x 10 ⁻ ¹⁰ mol/L	1.23 X 10 ⁻⁵	-log (1.23E-5) =4.910	В
3) 7.449	3.56 x 10 ⁻⁸	2.81 x 10 ⁻⁷ mol/L	6.551	В
4) 12.8	2 x 10 ⁻¹³ mol/L	6. x 10 ⁻² mol/L	1.2	В
5) 3.52	3.0 x 10 ⁻⁴	3.3 x 10 ⁻¹¹	10.48	Α
6) 13.759	1.74 x 10 ⁻¹⁴	5.74 X 10 ⁻¹	0.241	В

	[OH ⁻]	рОН	A/B/N
2.8 x 10 ⁻⁷	3.5 x 10⁻ ⁸	7.45	Α
3.99 X 10 ⁻³	2.51 x 10 ⁻¹²	11.601	Α
1.7 x 10 ⁻¹³	5.9 x 10 ⁻²	1.23	В
1.1 x 10 ⁻⁶	8.9 X 10 ⁻⁹	8.05	Α
	3.99 X 10 ⁻³ 1.7 x 10 ⁻¹³	3.99 X 10 ⁻³ 2.51 x 10 ⁻¹² 1.7 x 10 ⁻¹³ 5.9 x 10 ⁻²	3.99 X 10 ⁻³ 2.51 x 10 ⁻¹² 11.601 1.7 x 10 ⁻¹³ 5.9 x 10 ⁻² 1.23

4. What color would the indicator be given the following data:

	ORANGE IV	METHLY RED	PHENOL RED	METHYL ORANGE	INDIGO CARMINE
pOH=9.00	yellow	Red + Yellow = orange	yellow	yellow	blue
pH = 5.00					
pH=8.3	Yellow	Yellow	Red	Yellow	Blue
	Yellow	Red	Yellow	Red	Blue
[H+]=9.5 x 10 ⁻⁴ pH = 3.02					
[OH-]=5.6 x 10 ⁻³ pOH = 2.25; pH = 11.75	Yellow	yellow	Red	Yellow	Blue + yellow = green
[H ₃ O+] =1.0 x 10 ⁻⁷	Yellow	Yellow	Yellow to red = orange	Yellow	Blue

Worksheet 2.11: Introduction to Gases & Dalton's Gas Law

1. What are three physical properties of all gases?

Gases are do not have a fixed volume or shape (fill container), are compressible and

diffuse.

2. What three variables affect gases?

Pressure, temperature and volume

- 3. What instrument measures pressure? **Barometer (manometer)**
- 4. What is the SI unit for pressure? KPa (kiloPascals)
- 5. What unit expresses the average kinetic energy of a gas? Kelvin or degrees Celcius
- 6. A 1.00 L bottle of gas contains oxygen at 10.0 kPa, nitrogen at 12.1 kPa and hydrogen at 97.5 kPa
- a. What is the total pressure?

 $P_{T}=P_{1} + P_{2} + P_{3}$

P_⊤=10.0 kPa + 12.1 kPa + 97.5 kPa

P_T=119.6 kPa (one decimal place for significant digits)

b. What percent of each gas is present? (HINT % = $P_{gas}/P_{total} \times 100$)

oxygen = 8.36 %; nitrogen = 10.1 %; hydrogen = 81.5 % (3 significant digits)

c. What is the volume of each gas?

V of oxygen =1.00L x 0.0836 = 0.0836 L = <u>83.6 mL</u>

7. Four gases (A,B,C and D) make up a mixture with a pressure of 150 kPa. What is the partial pressure of gas A, if gas B has a pressure of 58.0 kPa, gas C has a pressure of 23.8 kPa and gas D has a pressure of 15.9 kPa.

$$P_1 = P_T - (P_2 + P_3 + P_4)$$

Chemistry 20 Worksheets

P=150kPa – (58.0kPa + 23.8kPa + 15.9kPa)

<u>P=52.3 kPa</u>

8. Three gases make up a mixture. At a particular pressure, the partial pressures are measured: Gas A = 67.00 kPa, Gas B, 6.70 kPa, and Gas C = 0.67 kPa. What is the pressure conditions under which this measurement is taken?

 $P_{T}=P_{1}+P_{2}+P_{3}$

P = 67.00 kPa + 6.70 kPa + 0.67 kPa = <u>74.37 kPa</u>

Worksheet 2.12: Boyles' Gas Law

- 1. What is the pressure when: (temperature is constant)
 - a. 130 mL of a gas at 740 mmHg is changed to 150 mL?

 $P_2 = P_1V_1/V_2$; $P_2=740$ mmHg x 130mL / 150mL

P₂=<u>641 mmHg</u>

b. 25 mL of gas at 65 atm is changed to 30.0 mL? $P_2 = P_1V_1/V_2$; $P_2=65atm \times 25mL / 30.0mL$ $P_2=54 atm$

c. 1.0 L of gas at 70 kPa is changed to 1.2 L?
 P₂ = P₁V₁/V₂; P₂=70kPa x 1.0L / 1.2L
 P₂=<u>58 kPa</u>

- 2. What is the volume when: (temperature is constant)
 - a. 75 mL of gas at 4.1 atm is changed to 7.0 atm? $V_2 = P_1V_1/P_2$; $V_2=4.1$ atm x 75mL / 7.0 atm

V₂=<u>44 mL</u>

b. 60.0 mL of gas at 760 mmHg is changed to 10 mmHg?

 $V_2 = P_1V_1/P_2; V_2=760mmHg \ x \ 60mL \ / \ 10 \ mmHg$

V₂=<u>4.6L or 4.6 x 10³ mL</u>

c. 400.0 mL of gas at 760 kPa is changed to 300 kPa?

 $V_2 = P_1V_1/P_2$; $V_2=760$ kPa x 400ml/300kPa

V₂=1013.33 mL; <u>1.01 x 10³ mL or 1.01 L</u>

Worksheet 2.13: Charles' Gas Law

- 1. What is the volume when: (pressure is constant)
 - a. 125 mL of gas at 25° C is cooled to Standard temperature?

 $T_1=25 + 273.15=298.15K$ $T_2=0 + 273.15=273.15K$ $V_2 = V_1T_2/T_1; V_2=$ $V_2=0.11L \text{ or } 1.1x102 \text{ mL}$

b. 300.0 mL of gas at 0.0°C is heated to 30.0° C? $T_1=0 + 273.15=273.15K$ $T_2=30 + 273.15=303.15K$ $V_2 = V_1T_2/T_1$; $V_2=$ $V_2=0.333L \text{ or } 333mL$

c. 220.0 mL of gas at 10.0°C is heated to 100.0°C? $T_1=10 + 273.15=283.15K$ $T_2=100 + 273.15=373.15K$ $V_2 = V_1T_2/T_1; V_2=$ $V_2=0.290L \text{ or } 290 \text{ mL}$

- 2. What is the temperature when: (pressure is constant)
 - a. 30.0 mL (V1) of gas at 14°C (T1) is compressed to 22 mL (V2)?

T₁=14 + 273.15=287.15K

 $T_2 = V_2T_1/V_1$; $T_2=22mLx287.15/30mL$

T₂=210.6 K; <u>2.1 x 10²K or -63C</u>

b. 16.4 mL of gas at 28°C is expanded to 20.0 mL?

 $T_1=28 + 273.15=301.15K$ $T_2 = V_2T_1/V_1; T_2=20 \times 301.15 / 16.4$ $T_2=367.25K; 3.7 \times 10^2 K \text{ or } 94C$

c. 39 mL of gas at 0.0°C is compressed to 35 mL?

T₁=0 + 273.15=273.15K

 $T_2 = V_2 T_1 / V_1; T_2 = 35x 273.15/39$

T₂=245.1K<u>; 2.5 x10²K or -28C</u>

Worksheet 2.14: Lusac's Gas Law

- 1. What is the pressure when: (volume is constant)
 - a. a gas at 130 C and 740 mmHg is changed to 150 C?

 $T_1=273.15 + 130 = 403.15K$ $T_2=273.15 + 150 = 423.15K$ $P_1=P_2T_1/T_2$; $P_1=740mmHg x 403.15K / 423.15K$ $P_1=\underline{777 mmHg}$

- b. a gas at 25 C and 65 atm is changed to 30.0 C? $T_1=273.15 + 25 = 293.15K$ $T_2=273.15 + 30.0 = 303.15K$ $P_1=P_2T_1/T_2$; $P_1=$ $P_1=\underline{66 \ atm}$
- c. a gas at 1.0 K and 70 kPa is changed to 1.2 K?
 P₁=P₂T₁/T₂; P₁=
 P₁= 84 kPa

- 2. What is the temperature in degrees Celcius when: (volume is constant)
 - a. a gas at 75.0 C and 4.10 atm is changed to 7.00 atm?

 $T_1=273.15 + 75.0 = 348.15K$ $T_2=P_2T_1/P_1; T_2=7.00 \times 348.15/4.10$ $T_2=594$ K or 321C b. a gas at 60.0 C and 760 mmHg is changed to 10.0 mmHg? $T_1=273.15 + 75.0 = 348.15K$ $T_2=P_2T_1/P_1; T_2=$ $T_2=4.38K \text{ or } -269 \text{ C}$

c. a gas at 113 K and 760 kPa is changed to 300 kPa?

 $T_2=P_2T_1/P_1$; $T_2=300$ kPa x 113K / 760kPa

T₂=<u>44.6K or -229 C</u>

Worksheet 2.15: Combined Gas Law

Solve the following gas problems.

1. If 120 mL of oxygen is collected at 27°C and 740 mmHg , what will the volume of the dry gas be at STP? **T=0C, P=760 mmHg**

T₁=273.15 + 27 = 300.15 K, V₁=0.120L, P₁=740mmHg

T₂=273.15 + 0 = 273.15 K, V₂=?, P₂=760mmHg

 $P_1V_1T_2=P_2V_2T_1; V_2=$

<u>V₂=0.11L or 1.1 x 10² mL</u>

2. If 500.0 mL of hydrogen is collected at 293.15 K and 95.0 kPa, what will the volume of the gas by at SATP? **T=25C**, **P=100 kPa**

T₁=293.15 K, V₁=0.500L, P₁=95.0kPa

T₂=273.15 + 25 = 298.15 K, V₂=?, P₂=100kPa

 $P_1V_1T_2=P_2V_2T_1; V_2=$

V₂=0.483L or 483 mL

3. 113 mL of oxygen is collected at 22°C and 98.0 kPa and left over night. The next day, the volume was 109 mL and the temperature was 21°C. What was the pressure?

T₁=273.15 + 22 = 295.15 K, V₁=0.113L, P₁=98.0kPa

T₂=273.15 + 21 = 294.15 K, V₂=0.109L, P₂=?

 $P_1V_1T_2=P_2V_2T_1; P_2=$

 $P_2=101.25 \text{ kPa}, P_2=1.0 \times 10^2 \text{ kPa}$

4. 36 mL of nitrogen was collected at 25°C, but the barometer was broken so the pressure could not be read. Three days later, the new barometer arrived. The new volume was 32 mL, the temperature was 21°C and the pressure reading was 739 mmHg. What was the original pressure?

T₁=273.15 + 25 = 298.15 K, V₁=0.036L, P₁=?

T₂=273.15 + 21 = 294.15 K, V₂=0.032L, P₂=739mmHg

 $P_1V_1T_2=P_2V_2T_1$

 P_1 =665.8 mmHg, P_1 = 6.7 x 10² mmHg

5. If 250 mL of helium was collected at STP, what will the temperature be if the volume is reduced to 200 mL and the pressure increased to 110 kPa?

T₁=273.15 + 0 = 273.15 K, V₁=0.250L, P₁=101.325 kPa

T₂=?, V₂=0.200L, P₂=110 kPa

P₁V₁T₂=P₂V₂T₁; T₂=110kPa x 0.200L x 273.15K/(101.325kPa x0.250L)

T₂=237 K or -35.9 C

6. A certain 1.0L sample of gas has a temperature of 23°C and a pressure of 0.96 atm. The sample was left overnight and the next day had a pressure of 1.00 atm and a volume of

1.1 L. What is the temperature on the second day?

T₁=273.15 + 23 = 296.15 K, V₁=1.0L, P₁=0.96 atm

 $T_2=?, V_2=1.1L, P_2=1.00 atm$

P₁V₁T₂=P₂V₂T₁ ; T₂ = 1.1L x 1.00 atm x 296.15K/(0.96atm x 1.0 L)

T₂=339 K; <u>T₂=3.4 x 10² K or 66 C</u>

Worksheet 2.16: Ideal Gas Law

Solve the following gas problems.

What pressure (kPa) is exerted by 1.0 mol of an ideal gas contained in a 1.0 L vessel at 0.0°C?
 PV=nRT; P=1.0mol x 8.314LkPa/Kmol x 273.15K / 1.0 L

P=2270.969 kPa, P=2.3 x 10³ kPa

What volume will 5.0 mol of an ideal gas occupy at 25.0°C and 1.5 atm of pressure?
 V=nRT/P; V=5.0mol x 0.0821Latm/Kmol x 298.15 K / 1.5 atm
 V=81.59L; V=82L

3. Calculate the molar mass of gas if 4.5 L of the gas is at 785 mmHg, 23.5°C and the gas has a mass of 13.5 g.

n=PV/RT; n=785mmHg x 4.5L / (62.4LmmHg/Kmol x 296.65 K)

n=0.1915755...mol

M=m/n; M=13.5g / 0.19...mol; M=70.74gmol or 71g/mol

4. 0.453 mol of a gas confined to a 15.0 L container exerts a pressure of 1.24 atm on the walls of the container. What is the temperature of the gas?

T=PV/nR; T=1.24atm x 15.0L / (0.453mol x 0.0821Latm/Kmol)

T=500K or 227C

5. 5.4 g of carbon dioxide gas is confined to a 20.0 L container at a temperature of 315.5 K. What pressure (kPa) does the gas exert?

n=m/M; n=5.4g/44.01g/mol; n=0.122699...mol

P=nRT/V; P=0.12...mol x 8.314LkPa/Kmol x 315.15K/20.0L

P=16.09 kPa; P=16 kPa

6. 2.125 g of a gas in a 1.25 L container exerts a pressure of 86.0 kPa at 40.0 °C. What is the molar mass of the gas?

n=PV/RT; n=86.0kPa x 1.25L / (8.314LkPa/Kmol x 313.15K)

n=0.041290...mol

M=m/n; M=2.125g/0.041290...mol; M=51.465 g/mol

M=<u>51.46g/mol or 51.5 g/mol</u>

7. To what temperature must 10.0 g of ammonia gas have to be heated in a 15.0 L container in order for it to exert a pressure of 3.50 atm?

n=m/M; n=10.0g / 17.04g/mol; n=0.5868...mol T=PV/nR; T=3.50atm x 15.0L / (0.5868...mol x 0.0821Latm/Kmol)

T=1089.6 K; <u>T=1.09x10³K</u>

8. 2.0 x 10⁻⁵g of hydrogen gas at 327 K exerts a pressure of 50.5 kPa on the walls of a small tube. What is the volume of the tube?

n=m/M; n=m/M; n=2.0x10⁻⁵g / 2.02g/mol; n=9.9... x 10⁻⁶ mol

V=nRT/P; V=9.9...x10⁻⁶mol x 8.314LkPa/Kmol / 50.5kPa

<u>V=5.3 x 10⁻⁴ L</u>

Worksheet 2.17: Gas Stoichiometry

1. What mass of propane from a tank can be burned using 50 L of oxygen at STP?

Step 1) $C_{3}H_{8(g)}$ + $5O_{2(g)}$ → $3CO_{2(g)}$ + $4H_{2}O_{(g)}$ Step 2) , n=PV/RT or n=v/V n=50L/22.4L/mol; n=2.3...molStep 3) X/1mol = 2.3...mol/5mol X=0.44...mol Step 4) m=nM; m=0.44...mol x 44.11g/mol

m= 19.69 g; <u>m=20g</u>

2. Hydrogen gas is burned in pollution-free vehicles to produce water vapor. What volume of hydrogen at 40°C and 150 kPa can be burned using 300 L of oxygen gas measured at the same conditions?

Step 1)	2H _{2(g)} +	O _{2(g)}	→	2H ₂ O _(g)
Step 2)	?	n=PV/	RT	
		N=(15	0kPa x	300L) / (8.314LkPa/Kmol x 313.15K)
		N=17.	2mol	
Step 3)	X/2mol=	17.2	.mol/1n	nol
	X=34.5mol			
Step 4)	V=nRT/P			
	V=34.5mol	x 8.314	ILkPa/I	Kmol x 313.15K / 150kPa
	V=600L; <u>V=6</u>	6.0 x 10	² L	

3. A Down's Cell is used in the industrial production of sodium from the decomposition of molten sodium chloride. What is the temperature of 250 L of chlorine gas produced at 100.1 kPa if 100.0 g of sodium is also produced?

Step 1)	2 NaCl _(/)	\rightarrow	2Na _(s)	+	Cl _{2(g)}
Step 2)			n=m/M		? K

	n=100g/22.99g/mc n=4.3mol	
Step 3)	4.3mol/2mol=	x/1mol
		X=2.1mol
Step 4)		T=PV/nR
		T=100.1kPax250L / (2.1mol x 8.314)
		T=1.38 x 10 ³ K or 1.11 x 10 ³ C

4. A typical home is heated with natural gas and consumes 2.00 ML of natural gas during the month of December. What volume of oxygen at STP is required to burn 2.00 ML of methane measured at 0°C and 120 kPa?

Step 1)	CH _{4(g)} +	2O _{2(g)} →	CO _{2(g)} +	2H ₂ O _(g)
Step 2)	n=PV/RT	?		
	N=120kPa x	2.00x10 ⁶ /(8.31	I4 x 273.15K)	
	N=105681	mol		
Step 3)	105681mc	ol/1mol=x/2mo	I	
		X=211362	mol	
Step 4)		V=nV or V=ı	nRT/P	
		V=211362	mol x 22.4L/m	nol
		<u>V=4.73 x 10</u>	⁶ L or 4.73 ML	

5. Methane reacts with steam to produce hydrogen gas and carbon dioxide gas. What volume of hydrogen gas, measured at 25°C and 120 kPa, can be produced from 1.0 t of steam?

Step 1)	CH _{4(g)} +	2H ₂ O _(g)	\rightarrow	CO _{2(g)}	+	4H _{2(g)}	
Step 2)		n=m/M					
		n=1000000g	/18.02g	/mol			
		n=55493…m	ol				
Step 3)		55493mol/	2mol		=		x/4mol
							X=11098mol
Step 4)							V=nRT/P
					V=110	98x8.3	14x298.15K/120kPa
					<u>V=2.3</u>	ML or	2.3 x 10 ⁶ L

6. Hydrogen gas can be produced from the electrolytic decomposition of water. What volume of hydrogen gas is produced, along with 52 kL of oxygen gas, at 25°C and 120kPa?

Step 1) $2H_2O_{(g)} \rightarrow 2H_{2(g)} + O_{2(g)}$

Step 2)	?		n=PV/RT
			n=(120kPa x 52000L)/(8.314 x 298.15)
			n=2517mol
Step 3)	X/2mol	=	2517mol/1mol
	X=5034mo	bl	
Step 4)	V=nRT/P; V=5034…mol x 8.314 x 298.15K/120kPa		
	V=104000L; <u>V=1.0 x 10⁵ L or 0.10 ML</u>		

Name: _____

1. A volume of 20.0 L of oxygen is warmed from -30.0 C to 85.0 C. What is the new volume, if the pressure is kept constant?

 $V_2 = V_1 T_2 / T_1; V_2 =$

V₂=29.5L

2. A mass of air occupies a volume of 5.7 L at a pressure of 0.52 atm. What is the new pressure if the same mass of air at the same temperature is transferred to a 2.0 L container?

 $P_2 = P_1 V_1 / V_2; P_2 =$

P2=1.5 atm

3. Determine the total pressure of a gas mixture that contains CO, Ne and He if the partial pressures of the gases are $P_{CO} = 1.53$ atm, $P_{Ne} = 0.82$ atm, and $P_{He} = 0.34$ atm.

 $P_t=P_1+P_2+P_3; P_t=$

P_t=2.69 atm (2 decimal places are significant because you are adding.)

4. What is the volume of a sample of oxygen gas that has a mass of 50.0 g and is under a pressure of 1.20 atm at 27.0 C?

V=nRT/P; V=

V=32.1L

5. What is the volume at STP of a sample of carbon dioxide gas that has a volume of 75.0 mL at 30.0 C and 680 mmHg?

 $V_1 = P_2 V_2 T_1 / (T_2 P_1); V_1 =$

V₁=0.0605L or 60.5 mL

6. A rigid container holds a gas at a pressure of 0.55 atm at a temperature of -100 C. What will the pressure be when the temperature is increased to 200 C?

 $P_2 = P_1 T_2 / T_1; P_2$

P₂=1.5 atm

7. Explain why real gases deviate from the gas laws.

Real gases deviate because they can be condensed into liquids, have particle size and attract each other, unlike ideal gases.