Name: KEY

Chemistry 20

Worksheet 4.1 - Solution Terminology and Theory

1. Illustrate (with a drawing) the difference between:
a) solute vs. solvent

b) homogenous mixture vs. heterogenous mixture

c) electrolyte vs. non-electrolyte

2. Illustrate two factors that affect the rate of solubility.
1) Agitation
2) Temperature
3) Surface area
3. Illustrate how the following solids dissolve in water
a) Glucose

b) copper (II) sulphate

c) hydrochloric acid

4. Many reactions only occur when the reactants are dissolved in water. Why?

Water allows ions to come into contact with each other.

Worksheet 4.2: Concentration Problems

1. What is the molar concentration of an electroplating solution in which 1.50 mol of copper (II) sulphate are dissolved in 2.00 L of water?

$$
\begin{aligned}
& \mathrm{C}=\underline{\mathrm{n}} ; \mathrm{C}=\frac{1.50 \mathrm{~mol}}{2.00 \mathrm{~L}} \\
& \mathrm{C}=0.750 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

2. What is the molar concentration of a solution in which 0.240 mol of washing soda, sodium carbonate decahydrate, is dissolved in 480 mL of water to make soft water solution?
$\mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=0.240 \mathrm{~mol} / 0.480 \mathrm{~L} ; \mathrm{C}=0.500 \mathrm{~mol} / \mathrm{L}$
3. What is the molar concentration of 500 mL of a solution that contains 12.7 g of swimming pool
chlorinator, $\mathrm{Ca}(\mathrm{OCl})_{2}$?
1) $n=m / M ; n=12.7 / 142.98 \mathrm{~g} / \mathrm{mol} ; n=0.0888 \ldots \mathrm{~mol}$
2) $C=n / V ; C=0.0888 \ldots \mathrm{~mol} / 0.500 \mathrm{~L} ; C=0.178 \mathrm{~mol} / \mathrm{L}$
$\mathrm{Ca}=40.08$
$0 \times 2=32.00$
Clx2 $=70.90$
$142.98 \mathrm{~g} / \mathrm{mol}$
4. A given sample of household ammonia contains 156 g of ammonia dissolved in water to form a 2.00L solution. What is the molar concentration of the ammonia solution?
$\mathrm{N}=14.01$
1) $n=m / M$; $n=156 \mathrm{~g} / 17.04 \mathrm{~g} / \mathrm{mol} ; \mathrm{n}=9.154 \ldots \mathrm{~mol}$
$\mathrm{Hx} 3=3.03$
$17.04 \mathrm{~g} / \mathrm{mol}$
2) $\mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=9.154 \ldots \mathrm{~mol} / 2.00 \mathrm{~L} ; \mathrm{C}=4.58 \mathrm{~mol} / \mathrm{L}$
5. Find the number of moles of sodium phosphate in 2.00 L of a $0.100 \mathrm{~mol} / \mathrm{L}$ sodium phosphate cleaning solution.
n=CV; n=0.100mol/L x 2.00 L ; $\mathrm{n}=0.200 \mathrm{~mol}$
6. How many moles of potassium sulphate are there in 500 mL of a 0.242 M solution used to remove rust stains?
$\mathrm{n}=\mathrm{CV} ; \mathrm{n}=0.242 \mathrm{~mol} / \mathrm{L} \times 0.500 \mathrm{~L} ; \mathrm{n}=0.121 \mathrm{~mol}$
7. What mass of sodium bicarbonate must be added to a 2.50 L bowl to obtain a necessary $0.150 \mathrm{~mol} / \mathrm{L}$ solution?
$\mathrm{Na}=22.99$
1) $n=C V ; n=0.150 \mathrm{~mol} / \mathrm{L} \times 2.50 \mathrm{~L} ; \mathrm{n}=0.375 \mathrm{~mol}$
$\mathrm{H}=1.01$
2) $m=n M$; $m=0.375 . . \mathrm{mol} x 84.01 \mathrm{~g} / \mathrm{mol}=31.5 \mathrm{~g}$
$C=12.01$
$0 \times 3=48.00$
$84.01 \mathrm{~g} / \mathrm{mol}$
8. What volume of a $0.075 \mathrm{~mol} / \mathrm{L}$ solution would contain the necessary 1.10 mol of sodium phosphate used to remove radiator scales?
$\mathrm{V}=\mathrm{n} / \mathrm{C} ; \quad \mathrm{V}=1.10 \mathrm{~mol} / 0.075 \mathrm{~mol} / \mathrm{L} ; \mathrm{V}=15 \mathrm{~L}$
9. What mass of sodium silicate is necessary to prepare 10.0 L of a $0.00500 \mathrm{~mol} / \mathrm{L}$ water softening solution?
6.10 g
10. How many litres of $0.800 \mathrm{~mol} / \mathrm{L}$ solution would contain 119.2 g of NaOCl ?
1) $n=m / M$; $n=119.2 \mathrm{~g} / 74.44 \mathrm{~g} / \mathrm{mol} ; \mathrm{n}=1.60 \ldots \mathrm{~mol}$
$\mathrm{Na}=22.99$
$0=16.00$
2) $V=n / C ; v=1.60 \ldots \mathrm{~mol} / 0.800 \mathrm{~mol} / \mathrm{L} ; \mathrm{v}=2.00 \mathrm{~L}$

Worksheet 4.3: Making solutions and dilutions

1. A scientist has a container with solid sodium hydroxide and a container of $5.00 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide.
a) What are the two ways that the scientists can use to make a solution with a specific volume and concentration?
Make a solution by mixing a solute of specific mass with a specific volume of solvent (water) OR make a dilution by adding water to a solution that is already made.
b) What are two ways that the scientist can dilute the $5.00 \mathrm{~mol} / \mathrm{L}$ solution?

Evaporate the solvent and then remove some solute and add the solvent back OR add more solvent to a small portion of the solution.
2. Describe the steps you would take to make 100 mL of a $0.200 \mathrm{~mol} / \mathrm{L}$ sodium chloride solution from salt crystals. Include the equipment and calculations you would make. Remember this is not a reaction.

1) Calculate moles - $\mathrm{n}=\mathrm{CV}$; $\mathrm{n}=0.200 \mathrm{~mol} / \mathrm{L} \times 0.100 \mathrm{~L} ; \mathrm{n}=0.0200 \mathrm{~mol} \mathrm{Na}=22.99$
2) Calculate mass - $\mathrm{m}=\mathrm{nM}$; $\mathrm{m}=0.0200 \mathrm{~mol} \times 58.44 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=1.17 \mathrm{~g} \quad$ Cl$=35.45$
3) Weight with a scale; Mix in beaker with 50 mL of water. $58.44 \mathrm{~g} / \mathrm{mol}$
4) Place solution in a 100 mL volumetric flask and fill to the meniscus/calibration line
5) Cap and mix
3. Describe the steps you would take to make 250 mL of a $0.453 \mathrm{~mol} / \mathrm{L}$ solution of copper (II) sulphate from solid copper (II) sulphate pentahydrate. Include equipment and calculations.
1) Calculate the moles $-\mathrm{n}=\mathrm{CV}$; $\mathrm{n}=0.453 \mathrm{~mol} / \mathrm{L} \times 0.250 \mathrm{~L} ; \mathrm{n}=0.113 \ldots \mathrm{~mol} \mathrm{Cu}=63.55$
2) Calculate the mass $-\mathrm{m}=\mathrm{nM}$; $\mathrm{m}=0.113 . . \mathrm{mol} \times 249.71 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=28.3 \mathrm{~g}$
3) Wieght it; mix in beaker with about 125 mL
4) Place in a 250 mL volumetric flask and fill to the meniscus/calibration line
5) Cap and mix

Equipment: Calculator, weight scale, 250 mL volumetric flask, 125 mL beaker, eye dropper, cap
4. Describe the steps you would take to make 100 mL (V2) of a $0.50 \mathrm{~mol} / \mathrm{L}$ (C2) sucrose solution from a container of $2.10 \mathrm{~mol} / \mathrm{L}(\mathrm{C} 1)$ sucrose solution. Include equipment and calculations.

1) Calculate volume that needs to be removed. $\mathrm{V}_{1}=\mathrm{C}_{2} \mathrm{~V} 2 / \mathrm{C} 1$;

V1 $=0.50 \mathrm{~mol} / \mathrm{Lx} 0.100 \mathrm{~L} / 2.10 \mathrm{~mol} / \mathrm{L}$
V1=0.0238; V1=24mL
2) Remove 24 mL with a graduated pipet
3) Place in a 100 mL volumetric flask;
4) fill to calibration line; cap and mix
5. Describe the steps you would take to make 500 mL (V2) of a $0.900 \mathrm{~mol} / \mathrm{L}(\mathrm{C} 2)$ sulphuric acid from a $1.50 \mathrm{~L}(\mathrm{~V} 1)$ container of $6.00 \mathrm{~mol} / \mathrm{L}(\mathbf{C 2})$ sulphuric acid solution. Include equipment and calculations.

1) Calculate volume; $\mathrm{V} 1=\mathrm{C} 2 \mathrm{~V} 2 / \mathrm{C} 1 ; \mathrm{V} 1=0.900 \mathrm{~mol} / \mathrm{L} \times 0.500 \mathrm{~L} / 6.00 \mathrm{~mol} / \mathrm{L}=0.0750 \mathrm{~L}$ or 75.0 mL
2) Remove 75 mL with a volumetric pipet.
3) Place in a 500 mL volumetric flask;
4) fill with 425 ml of water to calibration line and cap and mix
6. What is the final concentration of a cleaner if $10 \mathrm{~L}(\mathbf{V} 1)$ of concentrated sodium hydroxide (19.1 $\mathrm{mol} / \mathrm{L}) \mathrm{C} 1$) is diluted to $400 \mathrm{~L}(\mathrm{~V} 2)$?
$\mathrm{C}_{2}=\mathrm{C}_{1} \mathrm{~V}_{1} / \mathrm{V}_{2} ; \quad 19.1 \mathrm{~mol} / \mathrm{L} \times 10 \mathrm{~L} / 400 \mathrm{~L}=0.48 \mathrm{~mol} / \mathrm{L}$
7. What is the mass of baking soda (sodium hydrogen carbonate) needed to make 2.5 L of a $1.00 \mathrm{~mol} / \mathrm{L}$ solution?
1) $\mathrm{n}=\mathrm{CV} ; 1.00 \mathrm{~mol} / \mathrm{L} \times 2.5 \mathrm{~L}$; $\mathrm{n}=2.5 \mathrm{~mol}$
2) $\mathrm{m}=\mathrm{nM}$; $2.5 \mathrm{~mol} \times 84.01 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=2.1 \times 10^{2} \mathrm{~g}$ or 0.21 kg
8. If 2.0 L of water is added to 1.0 L of a $0.250 \mathrm{~mol} / \mathrm{L}$ solution of potassium hydroxide what is the final concentration. (Be Careful)
$\mathrm{C}_{2}=\mathrm{C}_{1} \mathrm{~V}_{1} / \mathrm{V}_{2} ; \mathrm{C}_{2}=0.250 \mathrm{~mol} / \mathrm{L} \times 1.0 \mathrm{~L} / 3.0 \mathrm{~L} ; \mathrm{C}_{2}=0.083 \mathrm{~mol} / \mathrm{L}$
9. CHALLENGE: If 1.50 L of a $12.4 \mathrm{~mol} / \mathrm{L}$ solution of hydrochloric acid was mixed with 300 mL of a 6.10 $\mathrm{mol} / \mathrm{L}$ solution of hydrochloric acid, then what would be the final concentration.
$\mathrm{C}_{\text {new }}=\mathrm{n}_{\text {total }} / \mathrm{V}_{\text {total }} ; \mathrm{C}_{\text {new }}=(1.50 \mathrm{Lx} 12.4 \mathrm{~mol} / \mathrm{L})+(6.10 \mathrm{~mol} / \mathrm{L} \times 0.300 \mathrm{~L}) /(1.50 \mathrm{~L}+0.300 \mathrm{~L})$ $\mathrm{C}_{\text {new }}=(18.6 \mathrm{~mol}+1.83 \mathrm{~mol}) / 1.8 \mathrm{~L} ; \mathrm{C}_{\text {new }}=11.4 \mathrm{~mol} / \mathrm{L}$
10. CHALLENGE: How much water is added to $50.0 \mathrm{~mL}(\mathbf{V} 1)$ of a $0.500 \mathrm{~mol} / \mathrm{L}(\mathbf{C 1})$ solution to make a $0.100 \mathrm{~mol} / \mathrm{L}(\mathrm{C} 2)$ solution?
$\mathrm{V}_{2}=\mathrm{C}_{1} \mathrm{~V}_{1} / \mathrm{C}_{2} ; \mathrm{V}_{2}=0.500 \mathrm{~mol} / \mathrm{L} \times 0.050 \mathrm{~L} / 0.100 \mathrm{~mol} / \mathrm{L} ; \mathrm{V} 2=250 \mathrm{~mL}$ $\mathrm{V}_{\text {water }}=\mathrm{V}_{2}-\mathrm{V}_{1}$; Vwater $=\mathbf{2 5 0} \mathbf{~ m l}-\mathbf{5 0} \mathbf{~ m L}$; $\mathrm{V}_{\text {water }}=200 \mathrm{~mL}$

Worksheet 4.4: Dissociation and ionization reactions

1. What type of compounds dissociate? What type of compounds ionize?
lonic compounds dissociate Acids \& gases w/hydrogen ionize
2. Write dissociation or ionization reactions for the following chemicals after they are mixed with water. Show the physical states of all species involved. Use modified ionization reactions when necessary.
a) Aqueous hydrochloric acid (ionizes)

OLD: $\mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}^{+}{ }_{(a q)}+\mathrm{Cl}^{-}{ }_{(a q)}$ MODIFIED: $\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{Cl}^{-}{ }_{(a q)}$
b) Solid strontium hydroxide (ionic compounds dissociate)

$$
\mathrm{Sr}(\mathrm{OH})_{2(s)} \rightarrow \mathrm{Sr}^{2+}{ }_{(a q)}+2 \mathrm{OH}_{(a q)}^{-}
$$

c) Solid copper (II) sulphate pentahydrate

$$
\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}_{(s)} \rightarrow \mathrm{Cu}^{2+}{ }_{(a q)}+\mathrm{SO}_{4}^{2-}{ }_{(a q)}\left(+5 \mathrm{H}_{2} \mathrm{O}_{(I)}\right)
$$

d) Solid sodium bicarbonate (hydrogen carbonate
$\mathrm{NaHCO}_{3(s)} \rightarrow \mathrm{Na}^{+}{ }_{(\text {aq })}+\mathrm{HCO}_{3}{ }^{-}{ }_{(\text {aq })}$
e) ammonia gas (acid and bases)
$\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\text {(aq) }}$
3. For each of the following write dissociation or ionization equations and find the concentration of each ion.
a) $\quad 0.90 \mathrm{~mol} / \mathrm{L}$ solution of sodium phosphate

$$
\begin{array}{lll}
\mathrm{G} & \mathrm{R1} & \mathrm{R2} \\
\mathrm{Na}_{3} \mathrm{PO}_{4(a q)} \rightarrow & 3 \mathrm{Na}^{+}{ }_{(a q)}+ & 1 \mathrm{PO}_{4}{ }^{3-}{ }_{(a q)}
\end{array}
$$

R1) $0.90 \mathrm{~mol} \quad x 3 \mathrm{~mol}$ of $\mathrm{Na}^{+}=2.7 \mathrm{~mol} / \mathrm{L}$
R2) $\quad 0.90 \mathrm{~mol} \times 1 \mathrm{~mol}$ of $\mathrm{PO}_{4}{ }^{3-}$ L(same) $1 \mathbf{~ m o l}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4}$
b) $\quad 0.143 \mathrm{~mol} / \mathrm{L}$ solution of nitric acid

$$
\begin{array}{lcl}
\mathrm{G} & \mathrm{R1} & \mathrm{R} 2 \\
1 \mathrm{HNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} & \rightarrow 1 \mathrm{H}_{3} \mathrm{O}+{ }_{(a q)}+\mathrm{NO}_{3}^{-}{ }^{-}(\mathrm{aq)} \\
0.143 \mathrm{~mol} / \mathrm{L} & 0.143 \mathrm{~mol} / \mathrm{L} & \mathbf{0 . 1 4 3 \mathrm { mol } / \mathrm { L }}
\end{array}
$$

c) $\quad 0.0135 \mathrm{~mol} / \mathrm{L}$ solution of calcium hydroxide

$$
\begin{array}{lll}
\mathrm{Ca}(\mathrm{OH})_{2(s)} \rightarrow & \mathrm{Ca}^{2+}(\mathrm{aq}) \\
0.0135 \mathrm{~mol} / \mathrm{L} & \times 1 \mathrm{~mol} / 1 \mathrm{~mol} & 2 \mathrm{OH}-_{(a q)} \\
& =0.0135 \mathrm{~mol} / \mathrm{L} & \times 1 \mathrm{~mol} / 2 \mathrm{~mol} \\
& =0.0270 \mathrm{~mol} / \mathrm{L}
\end{array}
$$

d) $\quad 0.150 \mathrm{~mol}$ of hydrogen fluoride gas bubbled into 1.00 L of water

$\mathrm{HF}_{(g)}+$			
0.150 mol	$\mathrm{H}_{2} \mathrm{O}_{(g)} \xrightarrow{\rightarrow} \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq) }}$		
	$0.150 \mathrm{~mol} / \mathrm{L}$	$+\quad$	$\mathrm{F}_{\text {-(aq) }}$
:---			
$0.150 \mathrm{~mol} / \mathrm{L}$			

4. What is the concentration of chloride ions in a solution prepared by dissolving 800 g of zinc chloride in 4.50 L of water?
1) $n=m / M$; $n=800 / 136.28 \mathrm{~g} / \mathrm{mol} ; n=5.87 \ldots \mathrm{~mol}$
2) $\mathrm{ZnCl}_{2(s)} \rightarrow \mathrm{Zn}^{2+}{ }_{(a q)}+2 \mathrm{Cl}_{-(\text {(aq) }}$ $5.87 \mathrm{~mol} \quad 11.74 \ldots \mathrm{~mol}$ $C=n / V ; C=2.61 \mathrm{~mol} / \mathrm{L}$
5. What is the mass of calcium chloride required to prepare 2.000 L of $0.120 \mathrm{~mol} / \mathrm{L}$ chloride ions?
1) $\mathrm{n}=\mathrm{CV} ; 0.120 \mathrm{~mol} / \mathrm{L} \times 2.00 \mathrm{~L}=0.240 \mathrm{~mol}$
2) $\mathrm{CaCl}_{2(s)} \rightarrow \mathrm{Ca}^{+}{ }_{(a q)}+2 \mathrm{Cl}_{-(a q)}$
3) $X / 1 \mathrm{~mol}=0.240 \mathrm{~mol} / 2 \mathrm{~mol}$
$X=0.120 \mathrm{~mol}$
4) $m=n M ; m=0.120 \mathrm{~mol} \times 110.98 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=13.3 \mathrm{~g}$
6. What is the final concentration if 2.0 L of water is added to 4.50 L of a $0.89 \mathrm{~mol} / \mathrm{L}$ solution of sodium chloride?
$\mathrm{C}_{2}=\mathrm{C}_{1} \mathrm{~V}_{1} / \mathrm{V}_{2} ; \mathrm{C}_{2}=0.89 \mathrm{~mol} / \mathrm{L} \times 4.50 \mathrm{~L} / 6.50 \mathrm{~L} ; \mathrm{C}_{2}=0.62 \mathrm{~mol} / \mathrm{L}$

Worksheet 4.5: Net lonic Equations

For the following reactions, write the nonionic equation, the total ionic equation and the net ionic equation.

1. Aqueous solutions of sodium sulphate and barium bromide are mixed.

NON IONIC: $\mathrm{Na}_{2} \mathrm{SO}_{4(a q)}+\mathrm{Ba}(\mathrm{Br})_{2(a q)} \rightarrow \mathrm{BaSO}_{4(s)}+2 \mathrm{NaBr}_{(a q)}$
TOTAL IONIC: $2 \mathrm{Na}^{+}{ }_{\text {(aq) }}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\text {aq) }}+\mathrm{Ba}^{2+}{ }_{(\text {aq) }} 2 \mathrm{Br}^{-{ }_{(\text {taq }}} \rightarrow \mathrm{BaSO}_{4(s)}+2 \mathrm{Na}^{+}{ }_{\text {(aq) }}+2 \mathrm{Br}_{\text {(aq) }}{ }^{-}$
NET IONIC: $\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)}+\mathrm{Ba}^{2+}{ }_{(a q)} \rightarrow \mathrm{BaSO}_{4(s)}$
Spectator lons: ${ }^{\mathrm{Na}^{+}{ }_{(a q)}{ }^{-1} \mathrm{Br}^{-}{ }_{(\text {aq })}}$
2. A lead (II) nitrate solution reacts with sodium sulphide solution

NON IONIC: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{aq)}+\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{aq})} \rightarrow 2 \mathrm{NaNO}_{3(\mathrm{aq)}}+\mathrm{PbS}_{(\mathrm{s})}\right.$
Total IONIC: $\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{S}^{2-}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{PbS}_{(\mathrm{s})}$
NET IONIC: $\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+\mathrm{S}^{2-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{PbS}_{(\mathrm{s})}$
3. Sulphuric acid is neutralized by a potassium hydroxide solution

NON IONIC: $\mathrm{H}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{KOH}_{(a q)} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{HOH}_{(1)}$
TOTAL IONIC: $\mathbf{2 H}^{+}{ }_{(a q)}+\mathbf{S O}_{4}^{2-}{ }_{(a q)}+2 \mathrm{~K}_{(a q)}^{+}+2 \mathrm{OH}_{(a q)}{ }^{(a)} \rightarrow 2 \mathrm{~K}_{(a q)}^{+}+\mathrm{SO}_{4}^{2-}{ }_{(a q)}+2 \mathrm{HOH}_{(I)}$
NET IONIC: $2 \mathrm{H}^{+}{ }_{(\text {aq })}+\mathbf{2 O H}^{-}{ }_{(\text {aq })} \rightarrow 2 \mathrm{HOH}_{(l)}$

$$
\mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{HOH}_{(l)}
$$

4. Hydrochloric acid is added to a solution of barium hydroxide

NON IONIC: $2 \mathrm{HCl}_{(a q)}+\mathrm{Ba}(\mathrm{OH})_{2(a q)} \rightarrow \mathrm{BaCl}_{2(a q)}+2 \mathrm{HOH}_{(l)}$
TOTAL IONIC: $2 \mathrm{H}^{+}{ }_{(a q)}+2 \mathrm{Cl}_{(a q)}^{-}+\mathrm{Ba}_{(\text {(aq) }}^{2+}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{Ba}_{(a q)}^{+}+2 \mathrm{Cl}_{(a q)}^{-}+2 \mathrm{HOH}_{(I)}$
NET IONIC: $\mathbf{2 H ^ { + }}{ }_{(a q)}+\mathbf{2 O H}^{-}{ }_{(a q)} \rightarrow 2 \mathrm{HOH}_{(l)}$

$$
\mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)} \rightarrow \mathrm{HOH}_{(l)}
$$

5. Magnesium metal is added to an aqueous solution of hydrogen bromide

NON IONIC: $\mathbf{M g}_{(s)}+2 \mathrm{HBr}_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{MgBr}_{2(a q)}$
TOTAL IONIC: $\mathrm{Mg}_{(s)}+2 \mathrm{H}^{+}{ }_{(a q)}+2 \mathrm{Br}_{(a q)}^{-} \rightarrow \mathrm{H}_{2(g)}+\mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathrm{Br}_{(a q)}^{-}$
NET IONIC: $\mathbf{M g}_{(s)}+\mathbf{2 H}^{+}{ }_{(a q)} \rightarrow \mathbf{H}_{2(g)}+\mathbf{M g}^{2+}{ }_{(a q)}$
6. Zinc reacts with copper (II) sulphate solution

NON IONIC: $\mathrm{Zn}_{(s)}+\mathrm{CuSO}_{4(a q)} \rightarrow \mathrm{Cu}_{(s)}+\mathrm{ZnSO}_{4(a q)}$
TOTAL IONIC: $\mathrm{Zn}_{(s)}+\mathrm{Cu}^{2+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2-}($ (aq) $) \rightarrow \mathrm{Cu}_{(s)}+\mathrm{Zn}^{2+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2+}($ aq $)$
NET IONIC: $\mathbf{Z n}_{(s)}+\mathbf{C u}^{2+}{ }_{(a q)} \rightarrow \mathbf{C u}_{(s)}+\mathbf{Z n}^{2+}{ }_{(a q)}$
7. Zinc reacts with acetic acid (vinegar)

NON IONIC: $\mathrm{Zn}_{(s)}+2 \mathrm{CH}_{3} \mathrm{COOH}_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2(a q)}$
TOTAL IONIC: $\mathrm{Zn}_{(s)}+2 \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(a q)-}+2 \mathrm{H}^{+}{ }_{(\text {aq })} \rightarrow \mathrm{H}_{2(g)}+\mathrm{Zn}^{2+}{ }_{(a q)}+2 \mathrm{CH}_{3} \mathrm{COO}_{(a q)}^{-}$
NET IONIC: : $\mathbf{Z n}_{(s)}+\mathbf{2 H}^{+}{ }_{(a q)} \rightarrow \mathbf{H}_{2(g)}+\mathbf{Z n}^{2+}{ }_{(a q)}$
8. Bromine is added to a magnesium iodide solution

NON IONIC: $\mathrm{Br}_{2(l)}+\mathrm{MgI}_{2(a q)} \rightarrow \mathrm{I}_{2(s)}+\mathrm{MgBr}_{2(a q)}$
TOTAL IONIC: $\mathrm{Br}_{2(l)}+\mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathbf{I}^{-}{ }_{(a q)} \rightarrow \mathrm{I}_{2(s)}+\mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathrm{Br}^{-}{ }_{(a q)}$
NET IONIC: $\mathrm{Br}_{2(I)}+\mathbf{2 l}^{-}{ }_{(a q)} \rightarrow \mathrm{I}_{2(s)}+2 \mathrm{Br}^{-}{ }_{(a q)}$

Worksheet 4.6: Solution Stoichiometry

1. A 200 mL solution of potassium phosphate reacts with 100 mL of $0.150 \mathrm{~mol} / \mathrm{L}$ iron (III) sulphate solution. What is the concentration of the potassium phosphate solution?

R
R G

1) $\quad 2 \mathrm{~K}_{3}\left(\mathrm{PO}_{4}\right)_{\text {(aq }}$
$+\quad \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3(a q)} \quad \rightarrow \quad 3 \mathrm{~K}_{2}\left(\mathrm{SO}_{4}\right)_{(a q)}$
$+\quad 2 \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{(a q)}$
$\mathrm{V}=0.200 \mathrm{~L}$
$\mathrm{V}=0.100 \mathrm{~L}$
$\mathrm{C}=0.150 \mathrm{~mol} / \mathrm{L}$
2) $\mathrm{n}=\mathrm{CV}$; $\mathrm{n}=0.150 \mathrm{~mol} / \mathrm{Lx} 0.100 \mathrm{~L}=0.0150 \mathrm{~mol}$
3) $\mathbf{x} 2 \mathrm{~mol}$ of $\mathrm{K}_{3}\left(\mathrm{PO}_{4}\right)_{(a q)} 1 \mathrm{~mol}$ of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3(a q)}=0.0300 \mathrm{~mol}$
4) $\quad C=n / V=0.0300 \mathrm{~mol} / 0.200 L$ $C=0.150 \mathrm{~mol} / \mathrm{L}$
UNIT ANALYSIS METHOD:

2. If 230 mL of a $1.00 \mathrm{~mol} / \mathrm{L}$ solution of aluminium chlorate is reacted with sufficient lithium hydroxide solution, what mass of precipitate is formed?

R
1)
$\mathrm{Al}\left(\mathrm{ClO}_{3}\right)_{3}(a q)$
$0.230 \mathrm{~L}=\mathrm{V}$
$1.00 \mathrm{~mol} / \mathrm{L}=\mathrm{C}$
2) $n=C V ; n=1.00 \mathrm{~mol} / \mathrm{Lx} 0.230 \mathrm{~L}=0.230 \mathrm{~mol}$
2) 0.230 mol of $\mathrm{Al}\left(\mathrm{ClO}_{3}\right)_{3(a q)} \times 1 \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})} / 1 \mathrm{~mol}$ of $\mathrm{Al}\left(\mathrm{ClO}_{3}\right)_{3(a q)}=0.230 \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{OH})_{3(s)}$ $m=n M ; m=0.230 \mathrm{~mol} \times 78.01 \mathrm{~g} / \mathrm{mol}$ $\mathrm{m}=17.9 \mathrm{~g}$
UNIT ANALYSIS METHOD:

3. Predict the mass of magnesium metal that will be required to react with 44.0 ml of $0.200 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid.R
$\mathrm{Mg}_{(s)}+2 \mathrm{HCl}_{(a q)} \quad \rightarrow \quad \mathrm{H}_{2(g)} \quad+\quad \mathrm{MgCl}_{2(s)}$
0.200 mol of $\mathrm{HCl} \times 0.044 \mathrm{~L} \times 1 \mathrm{~mol} \mathrm{Mg} \times 24.31 \mathrm{~g}$ of $\mathrm{Mg}=0.10696 \ldots=0.107 \mathrm{~g}$
$1 \mathrm{~L} \quad 2 \mathrm{~mol} \mathrm{HCl} \quad 1 \mathrm{~mol}$ of Mg
4. What volume of $1.00 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3(\mathrm{aq})}$ is required to react completely with $1.20 \mathrm{~g}^{\text {of } \mathrm{LiOH}_{(a q)}}$?

5. A 100 ml sample of sodium sulphide solution is completely reacted with 50.0 ml of $0.250 \mathrm{~mol} / \mathrm{L}$ lead (II) nitrate solution. Predict the concentration of the $\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{aq})}$?
R G
$\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{aq})}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\rightarrow 2 \mathrm{NaNO}_{3(\mathrm{aq})}+\mathrm{PbS}_{(\mathrm{s})}$

6. 500 ml of $0.150 \mathrm{~mol} / \mathrm{L}$ cobalt (II) nitrate solution is reacted with 500 ml of $0.250 \mathrm{~mol} / \mathrm{L}$ of sodium hydroxide solution producing 4.77 g of precipitate. Find the \% yield for this reaction.

G1					R
$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2(a q)}+$	$2 \mathrm{NaOH}_{(a q)}$	\rightarrow	$2 \mathrm{NaNO}_{3(a q)}$	+	$\mathrm{Co}(\mathrm{OH})_{2(s)}$
$\mathrm{n}=\mathrm{CV}$	$\mathrm{n}=\mathrm{CV}$				$\mathrm{n}=\mathrm{m} / \mathrm{M}$
$\mathrm{n}=0.150 \mathrm{~mol} / \mathrm{Lx} 0.500 \mathrm{~L}$	$\mathrm{n}=0.250 \mathrm{mo}$	x0.50			$\mathrm{n}=4.77 \mathrm{~g} / 92.95 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}=0.075 \mathrm{~mol}$	$\mathrm{n}=0.125 \mathrm{mo}$				$\mathrm{n}=0.0513 \ldots \mathrm{~mol}$ (AY)
x 1mol/ 1 mol	x 1mol/2mo				
$=0.075 \mathrm{~mol}$ (EXCESS)	$=0.0625 \mathrm{~m}$	LIMIT	G (x $92.95 \mathrm{~g} /$	ol	09..g)
\% yield = A/T x 100\%;	\% yield = 0	513...	/0.0625 m		\% yield = 82.1\%

7. CHALLENGE: Predict the final mass of a 500 g bar of lead that is allowed to react completely with 2.00 L of $2.00 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$.

$4.00 \mathrm{~mol} \times 1 \mathrm{~mol}$ of $\mathrm{Pb} / 2 \mathrm{~mol}$ of $\mathrm{HCl}=2.00 \mathrm{~mol}$ of Pb was used
$\mathrm{m}=\mathrm{nM} ; \mathrm{m}=2.00 \mathrm{~mol} \times 207.2 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=414.40 \mathrm{~g}$
$\mathrm{m}_{\text {final }}=$ original - used
$\mathrm{m}_{\text {final }}=500-414.40=85.6 \mathrm{~g}$ left over
8. A 75.0 mL sample of $0.25 \mathrm{~mol} / \mathrm{L}$ silver chlorate solution reacts with 19.0 mL of $0.50 \mathrm{~mol} / \mathrm{L}$ copper (II) sulphate solution. What is the concentration of the solution produced? (NOTE: Find out what the total volume of the solution produced.)

G1		G2		R
1) $2 \mathrm{AgClO}_{3(a q)}$	+	$1 \mathrm{CuSO}_{4(a q)}$	\rightarrow	$\mathrm{Cu}\left(\mathrm{ClO}_{3}\right)_{2(a q)}+\mathrm{Ag}_{2} \mathrm{SO}_{4(s)}$
2) $\mathrm{n}=\mathrm{CV}$		$\mathrm{n}=\mathrm{CV}$		$\mathrm{C}=$?
$\mathrm{n}=0.25 \mathrm{~mol} / \mathrm{Lx} 0.075 \mathrm{~L}$		$\mathrm{n}=0.50 \mathrm{~mol} / \mathrm{Lx} 0.019 \mathrm{~L}$		
$\mathrm{n}=0.01875 \mathrm{~mol}$		$\mathrm{n}=0.0095 \mathrm{~mol}$		
x1mol/2mol		x1mol/ 1 mol		
=0.009375...mol		$=0.0095 \mathrm{~mol}$		
LIMITING		EXCESS		

$$
\begin{aligned}
& \mathrm{C}=\mathrm{n} / \mathrm{V}_{\text {total }} ; \quad \mathrm{C}=0.009375 \mathrm{~mol} / 0.094 \mathrm{~L} \\
& \mathrm{C}=0.0997 ; \quad \mathrm{C}=0.10 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Worksheet 4.7: Review of Solutions

1. Answer the following questions
a) How do solutions differ from heterogeneous mixtures?

Solutions are uniform and appear as one substance - heterogenous do not.
b) How do the number of molecules of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ in 250 mL of a $1.5 \mathrm{~mol} / \mathrm{L}$ solution of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ compare to the number of molecules of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in 250 mL of a $1.5 \mathrm{~mol} / \mathrm{L} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

The number of molecules is the same ($n=C V ; p=n P$); However the mass is different
c) What is the term used to describe two liquids which will NOT mix with each other?
immiscible
d) What are two factors that affect the amount of solute that dissolves and two factors that affect the rate of dissolving? Amount: temperature, pressure Rate: temperature, surface area, agitation
2. Write the equation for each of the following dissolving in water. Use modified Arhenius theory.
a) Hydrogen chloride gas

$$
\mathrm{HCl}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{Cl}_{(a q)}^{-} \text {IONIZE }
$$

b) Solid aluminum nitrate

$$
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3(s)} \rightarrow \mathrm{Al}^{3+}{ }_{(a q)}+3 \mathrm{NO}_{3}^{-}{ }_{(a q)} \text { DISSOCIATE }
$$

c) Solid sucrose

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(s)} \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(a q)} \text { DISSOLVE }
$$

d) Aqueous nitric acid
$\mathrm{HNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{NO}_{3}{ }^{-}($aq) $) \mathrm{IONIZE}$
3. Determine the concentration of each of the following solutes in the solution described.
a) 0.725 mol of cobalt (II) nitrate in 1.35 L of solution.
$\mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=0.725 \mathrm{~mol} / 1.35 \mathrm{~L} ; \mathrm{C}=0.537 \mathrm{~mol} / \mathrm{L}$
b) 15.0 g of barium sulphate in 125 mL of solution.
$\mathrm{n}=\mathrm{m} / \mathrm{M} ; \mathrm{n}=15.0 \mathrm{~g} / 233,39 \mathrm{~g} / \mathrm{mol} ; \mathrm{n}=0.0642 \ldots \mathrm{~mol}$
$\mathrm{Ba}=137.33$
S=32.06
$C=n / V ; C=0.065 \ldots \mathrm{~mol} / 0.125 \mathrm{~L} ; \mathrm{C}=0.514 \mathrm{~mol} / \mathrm{L} \quad O x 4=64.00 / 233.39 \mathrm{~g} / \mathrm{mol}$
c) 1.85×10^{22} molecules of ammonia gas in 400 mL of solution.
$\mathrm{n}=\mathrm{p} / \mathrm{P} ; \mathrm{n}=1.85 \times 10^{22} / 6.02 \times 10^{23} ; \mathrm{n}=0.0307 . . \mathrm{mol}$
C=n/V; C=0.0307...mol/ $0.400 \mathrm{~L} ; \mathrm{C}=0.0768 \mathrm{~mol} / \mathrm{L}$
4. Write the dissociation equation and calculate the concentration of each of the ions produced in $1.25 \mathrm{~mol} / \mathrm{L}$ solution of barium chloride.
$\mathrm{BaCl}_{2(s)}$

$1.25 \mathrm{~mol} / \mathrm{L} /$$\quad \rightarrow \quad$| $\mathrm{Ba}^{2+}{ }_{(a q)}$ | |
| :--- | :--- |
| | $x 1 \mathrm{~mol} / 1 \mathrm{~mol}$ |
| | $=1.25 \mathrm{~mol} / \mathrm{L}$ |

5. Write the dissociation equation and determine the concentration of the solution if $1.26 \mathrm{~mol} / \mathrm{L}$ of $\left[\mathrm{Na}^{+}\right]$is found in a sodium phosphate solution.

$$
\begin{array}{llcc}
\mathrm{Na}_{3} \mathrm{PO}_{4(s)} & \rightarrow & 3 \mathrm{Na}^{+}{ }_{(a q)} & +\quad \mathrm{PO}_{4}{ }^{3-}{ }_{(a q)} \\
& & 1.26 \mathrm{~mol} / \mathrm{L} \times 1 \mathrm{~mol} / 3 \mathrm{~mol}
\end{array}
$$

6. CHALLENGE: What is the [Cl^{-}] in a solution made by mixing 200 mL of $0.300 \mathrm{~mol} / \mathrm{L}$ sodium chloride solution with 350 mL of $0.250 \mathrm{~mol} / \mathrm{L}$ calcium chloride solution?
$\mathrm{NaCl}_{(s)} \rightarrow \mathrm{Na}^{+}{ }_{(\text {aq })}+\mathrm{Cl}^{-}{ }_{(\text {aq })}$
$\mathrm{CaCl}_{2(s)} \rightarrow \mathrm{Ca}^{2+}{ }_{\text {aq) }}+\mathrm{CCl}^{-}{ }_{(a q)}$
$\mathrm{C}_{\text {final }}=\mathrm{n}_{\text {total }} / \mathrm{V}_{\text {total }}$
$\mathrm{n}=\mathrm{CV}$; $\mathrm{n}=0.300 \mathrm{~mol} / \mathrm{Lx0} .200 \mathrm{~L}$
$\mathrm{n}=\mathrm{CV} ; \mathrm{n}=0.250 \mathrm{~mol} / \mathrm{Lx} 0.350 \mathrm{~L} \mathrm{C}=(0.600+0.175) /(0.2+0.35)$
$\mathrm{n}=0.0600 \mathrm{molx} 1 \mathrm{~mol} / 1 \mathrm{~mol}$
$\mathrm{n}_{\mathrm{Cl}}=0.0600 \mathrm{~mol}$
$\mathrm{n}=0.0875 \mathrm{molx} 2 \mathrm{~mol} / 1 \mathrm{~mol}$
$\mathrm{C}=0.235 \mathrm{~mol} / 0.550 \mathrm{~L}$
$\mathrm{n}_{\mathrm{Cl}}=0.175 \mathrm{~mol} \quad \mathrm{C}=0.427 \mathrm{~mol} / \mathrm{L}$

Write net ionic equations for the following reactions. (3 marks)
a) lead nitrate solution is mixed with sodium hydroxide

$$
\begin{aligned}
& \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{NaOH}_{(a q)} \rightarrow 2 \mathrm{NaNO}_{3(a q)}+\mathrm{Pb}(\mathrm{OH})_{2(s)} \\
& \mathrm{Pb}^{2+}{ }_{(a q)}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}+2 \mathrm{Na}^{+}{ }_{(a q)}+2 \mathrm{OH}^{-}{ }_{(a q)} \rightarrow 2 \mathrm{Na}^{+}{ }_{(a q)} 2 \mathrm{NO}_{3^{-}}{ }_{(a q)}+\mathrm{Pb}(\mathrm{OH})_{2(s} \\
& \mathrm{Pb}^{2+}{ }_{(\text {aq })}+2 \mathrm{OH}^{-}{ }_{(a q)} \rightarrow \mathrm{Pb}(\mathrm{OH})_{2(s)}
\end{aligned}
$$

b) barium nitrate reacts with potassium sulphide
NO NET IONIC EQUATION (all ions are spectator ions)
c) nitric acid reacts with barium hydroxide

$$
\begin{aligned}
& 2 \mathrm{HNO}_{3(a q)}+\mathrm{Ba}(\mathrm{OH})_{2(a q)} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{HOH}_{(l)} \\
& 2 \mathrm{H}^{+}{ }_{(a q)}+2 \mathrm{NO}_{3}{ }_{(a q)}+\mathrm{Ba}^{2+}{ }_{(a q)}+2 \mathrm{OH}_{(a q)} \rightarrow \mathrm{Ba}^{2+}{ }_{(a q)}+2 \mathrm{NO}_{3}{ }^{-}(a q)+2 \mathrm{HOH}_{(l)} \\
& \mathrm{H}_{(a q)}+\mathrm{OH}_{(a q)} \rightarrow \mathrm{HOH}_{(l)}(\text { Don't forget to reduce })
\end{aligned}
$$

7. Draw a diagram describing how methanol is dissolved in water. (1 mark)

8. Predict whether the following solutes are electrolytes or nonelectrolytes:
a) nitrogen monoxide - nonelectrolyte (molecular)
b) hydrofluoric acid - electrolyte (acid)
c) magnesium hydroxide - nonelectrolyte (ionic BUT not aqueous)
d) potassium hydrogen carbonate - electrolyte (ionic \& aqueous)
9. A scientists wants to make 100 mL of a $0.150 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution. He has 100 g of solid sodium hydroxide and he has 1.00 L of a $2.25 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution. Describe step by step the two ways that he could make his $0.150 \mathrm{~mol} / \mathrm{L}$ solution. Include the sample calculations and equipment.

Method I - from solid

1) Find moles; $n=C V ; 0.150 \times 0.100=0.0150 \mathrm{~mol}$

Method II-dilution

1) Find volume;
$\mathrm{V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2} / \mathrm{C}_{1}=0.150 \times 0.100 / 2.25=6.67 \mathrm{ml}$
2) Remove 6.67 mL with a graduated pipet
3) Find mass: $m=n M ; 0.0150 \times 40.00=0.600 \mathrm{~g}$
4) Weigh on a scale 3) Place in a 100 mL volumetric flask and fill to line
5) Mix 0.600 g in 50 ml of water 4) Cap and mix
6) Place in 100 mL volumetric flask and fill to calibration line. Cap and mix
10. A 20.0 g sample of lead (II) nitrate is mixed in 1.00 L of water. The lead (II) nitrate solution then reacts with a 1.00 L of a $0.100 \mathrm{~mol} / \mathrm{L}$ solution of rubidium iodide. If 20.0 g of precipitate forms, what is the percent yield?
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{NaOH}_{(a q)} \rightarrow 2 \mathrm{NaNO}_{3(a q)}+\mathrm{Pb}(\mathrm{OH})_{2(s)}$

$$
\begin{aligned}
& \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(a q)}+\mathrm{K}_{2} \mathrm{~S}_{(a q)} \rightarrow 2 \mathrm{KNO}_{3(a q)}+\mathrm{BaS}_{(a q)}
\end{aligned}
$$

Worksheet 2.8: Introduction to Acids \& Bases

1. Safety is very important when working with acids. Describe what the student should do in the following situations.
a) A student drops a 100 mL beaker with 50 mL of hydrochloric acid and spills the acid onto the floor.
Report the accident to a teacher. Place baking soda until it stops bubbling. (If you have no baking soda, dilute the acid with water.)
b) A student drips a couple of drops of sodium hydroxide solution onto his hand.

Report the incident to a teacher. Wash the sodium hydroxide off with cold water. Add vinegar to the spill.
c) A beaker with $\mathrm{Ba}(\mathrm{OH})_{2}$ tips over onto the lab bench.

Report the incident to a teacher. Place vinegar (acetic/ethanoic acid) onto the base. (If you have no vinegar, dilute the base with water.)
d) A student would like to dilute an acid and would like to know if he should add the acid to the water or the water to the acid
Always add acid to water (A to W).
2. WHMIS symbols help communicate dangers.
a) WHMIS stands for Workplace Hazardous Materials Information System
b) The symbol that would be associated with a beaker of base that corrodes metal is

Corrosive
Causes severe Skin Burns
\& Eye Damage.
is corrosive to metal.
c) Acids and bases can cause immediate and serious damage to a person's skin. The WHMIS symbol related to this is

Harmful or Fatal
Acute Toxicity.
Potentially fatal poisonous
substance if inhaled, swallowed, or through skin contact, even in small amounts.
d) Some acids react with oxygen. The WHMIS symbol found on a bottle of this acid would be

Oxidizing

Fire and/or Explosion Risk in the presence of flammable or combustible material.
May cause fire or enhance
the combustion of other materials
3. A person would like to make $100 \mathrm{~mL} 1.00 \mathrm{~mol} / \mathrm{L}$ solution of NaOH . Describe the steps the student would use. Include the calculations.

1) Calculate the moles: $n=C V ; n=1.00 \mathrm{~mol} / \mathrm{L} \times 0.100 \mathrm{~L} ; \mathrm{n}=0.100 \mathrm{~mol}$
2) Calculate mass: $m=n M$; $m=0.100 \mathrm{~mol} \times 40.00 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=4.00 \mathrm{~g}$
3) Weigh with scale; mix in beaker with 50 mL of water.
4) Place in 100 mL volumetric flask, fill to calibration line, cap \& mix.
4. A person would like to dilute a $12.1 \mathrm{~mol} / \mathrm{L}$ solution of HCl and make a $250 \mathrm{~mL} 3.00 \mathrm{~mol} / \mathrm{L}$ solution. Describe the steps the student would use. Include the calculations.
1) Find the volume; v1=C2V2/C1; V1=3.00mol/Lx $0.250 \mathrm{~L} / 12.1 \mathrm{~mol} / \mathrm{L}$: $\mathrm{V}=62.4 \mathrm{~mL}$
2) Remove it with graduated pipet.
3) Place in 250 mL volumetric flask; fil to calibration line; cap \& mix
5. Indicators change color to indicate whether you have an acid or base. Litmus paper and bromothymol blue are two common indicators. Complete the following table for these indicators.

PH	Litmus Paper color	Bromothymol Blue color
3	Red	yellow
7	No change	Green
10	Blue	Blue

6. What is one property that is similar between acids and bases?

Both electrolytes, both dissolve in water (aqueous)
7. What is one property that is different between acids and bases?
pH , taste, touch, reactions
8. Complete the following acid or base reactions.
a) sulphuric acid is neutralized by potassium hydroxide. Identify the "salt" in the reaction.

$$
\mathrm{H}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{KOH}_{(a q)} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{HOH}_{(l)}
$$

Salt
b) hydrochloric acid reacts with magnesium
$2 \mathrm{HCl}_{(a q)}+\mathrm{Mg}_{(s)} \rightarrow \mathrm{MgCl}_{2(a q)}+\mathrm{H}_{2(g)}$
salt
c) self ionization of water

$$
\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{OH}_{(a q)}^{-} \mathrm{OR} \mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}
$$

No salt

Worksheet 2.9: Acid \& Base Calculations

1. A 1.00 L solution of $1.50 \mathrm{~mol} / \mathrm{L}$ perchloric acid is dilluted by adding 500 mL of water. What is the hydronium concentration of the dilluted solution? $\mathrm{V}_{2}=\mathrm{V}_{1}+\mathrm{V}_{\text {water }}=1.00 \mathrm{~L}+0.500 \mathrm{~L}$
$\mathrm{HClO}_{4(a q)}+\quad \mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow$
$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$
$+\mathrm{ClO}_{4}^{-}{ }^{-}(a q)$
$\mathrm{C}_{2}=\mathrm{C}_{1} \mathrm{~V}_{1} / \mathrm{V}_{2}$
$\mathrm{C}_{2}=1.50 \mathrm{~mol} / \mathrm{Lx} 1.00 \mathrm{~L} / 1.50 \mathrm{~L}$
$\mathrm{C}_{2}=1.00 \mathrm{~mol} / \mathrm{L} 1.00 \mathrm{~mol} / \mathrm{L} / 1 \mathrm{~mol}=X / 1 \mathrm{~mol}$
$X=1.00 \mathrm{~mol} / \mathrm{L}$
2. A 250 mL solution of $3.56 \mathrm{~mol} / \mathrm{L}$ barium hydroxide is sitting on the counter in the lab. Help a chemistry 20 student determine the hydronium concentration of the solution.
$\mathrm{Ba}(\mathrm{OH})_{2(s)} \quad \rightarrow \quad \mathrm{Ba}^{2+}{ }_{(a q)} \quad+\quad 2 \mathrm{OH}^{(a q)}$
$\mathrm{n}=\mathrm{CV}$; $\mathrm{n}=3.56 \times 0.250=0.89 \mathrm{~mol}$
X 2mol/ 1 mol
$=1.78 \mathrm{~mol}$
$\mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=1.78 \mathrm{~mol} / 0.250 \mathrm{~L}=7.12 \mathrm{~mol} / \mathrm{L}$
$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq) }}=\mathrm{Kw} /\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right] ; \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq)}}=1 \mathrm{E}-14 / 7.12$
$=1.40 \mathrm{E}-15 \mathrm{~mol} / \mathrm{L}$
3. A $1.00 \mathrm{~mol} / \mathrm{L}$ solution of nitric acid ionizes. What is the hydroxide ion concentration?

$\mathrm{HNO}_{3(\text { aq) }}$	+	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow$	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$	+	
$1.00 \mathrm{~mol} / \mathrm{L}$			X1/1mol; X=1.00 mol/L		
$\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]=\mathrm{kw} /\left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}\right]$					
$=1.00 \times 10$		mol/L; [] $]=1.00$		

4. A student takes 11.6 grams of strontium hydroxide and adds it to 3.00 litres of water. What is the hydronium concentration?
5. A solution contains $1.67 \times 10^{-14} \mathrm{~mol} / \mathrm{L}$ of hydronium ions. Determine the mass of barium hydroxide that was added to 1.00 L of water to make this solution.

| $\mathrm{Ba}(\mathrm{OH})_{2(s)} \rightarrow \mathrm{Ba}^{2+}{ }_{(a q)} \quad+\quad 2 \mathrm{OH}^{-}(a q)$ | $\left[\mathrm{OH}^{-}\right]=\mathrm{kw} /\left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}\right]$ |
| :--- | :--- | :--- | :--- |
| | $=1.00 \times 10^{-14}(\mathrm{~mol} / \mathrm{L})^{2} / 1.67 \times 10^{-14} \mathrm{~mol} / \mathrm{L}$ |

X1mol/2mol
0.5988...mol/L

X=0.2994...mol/L
$\mathrm{n}=\mathrm{CV}$; $\mathrm{n}=0.2994 \times 1 \mathrm{~L}=0.2994 \ldots \mathrm{~mol}$
$\mathrm{m}=\mathrm{nM}$; $\mathrm{m}=0.2994 \ldots \mathrm{~mol} \times 171.35 \mathrm{~g} / \mathrm{mol}$
$\mathrm{m}=51.3 \mathrm{~g}$
6. What is the concentration of hydroxide ions found in a 1.00 L solution of $2.00 \mathrm{~mol} / \mathrm{L}$ potassium hydroxide?
7. What is the hydroxide concentration of a 1.00 L solution of $2.50 \mathrm{~mol} / \mathrm{L}$ hydrobromic acid?
$\mathrm{HBr}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{Br}^{-}{ }_{(a q)}$
$2.50 \mathrm{~mol} / \mathrm{L}$
x $1 \mathrm{~mol} / 1 \mathrm{~mol}$
$X=2.50 \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]=\mathrm{kw} /\left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}\right]$
$=1.00 \times 10^{-14}(\mathrm{~mol} / \mathrm{L})^{2} / 2.50 \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{OH}_{(\mathrm{aq})}^{-}\right]=4.00 \times 10^{-15} \mathrm{~mol} / \mathrm{L}$
8. What is the hydronium concentration when $1.00 \mathrm{~mol} / \mathrm{L}$ of barium hydroxide dissociates
9. 6.02×10^{22} particles of sulphuric acid ionize into hydrogen sulphate ions in 1.00 L of water. What is the hydroxide concentration of the solution?
$\mathrm{H}_{2} \mathrm{SO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \quad+\quad \mathrm{HSO}_{4}{ }^{-}{ }_{(a q)}$
$\mathrm{n}=\mathrm{p} / \mathrm{P}$
$\mathrm{n}=6.02 \times 10^{22}$ ions $/ 6.02 \times 10^{23}$ ions $/ \mathrm{mol}$
$\mathrm{n}=0.1$...mol
$\mathrm{C}=\mathrm{n} / \mathrm{V}=0.1 . . . \mathrm{mol} / 1.00 \mathrm{~L}$
$0.100 \mathrm{~mol} / \mathrm{L} \quad x$ 1mol/ $1 \mathrm{~mol} ; \mathrm{X}=0.100 \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]=\mathrm{kw} /\left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}\right]$
$=1.00 \times 10^{-14}(\mathrm{~mol} / \mathrm{L})^{2} / 0.100 \mathrm{~mol} / \mathrm{L}$;
$\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]=1.00 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$
10. A solution contains $3.45 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$ of hydroxide ions. What is the concentration of the hydrochloric acid solution that contains these hydroxide ions?

Worksheet 2.10: Acid \& Base Review

1. The concentration of hydroiodic acid is $1.73 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$. What is the pH and the pOH ?

$$
\begin{array}{ll}
\mathrm{HI}_{(a q)} \\
1.73 \times 10-3 \mathrm{~mol} / \mathrm{L} / 1 \mathrm{~mol} & \mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \\
& \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \quad+\quad \mathrm{I}^{-}(a q) \\
& \\
& \mathrm{X} / 1 \mathrm{~mol} \\
& \mathrm{X}=1.73 \times 10-3 \mathrm{~mol} / \mathrm{L} \\
& \mathrm{PH}=-10 \mathrm{log}(1.73 \times 10-3 \mathrm{~mol} / \mathrm{L}) \\
& \mathrm{PH}=2.76195 \ldots(2.762) \\
& \mathrm{POH}=14-\mathrm{pH}=11.238
\end{array}
$$

2. What is the hydronium concentration and hydroxide concentration of a $2.47 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ solution of strontium hydroxide?
3. Complete the following table (Significant digits are important):

pH	[H^{+}] or [$\mathrm{H}_{3} \mathrm{O}+$]	[OH^{-}]	pOH	A/B/N
$\begin{aligned} & 14-4.56 \\ & \text { OR } \\ & -\log (3.6 \mathrm{E}-10) \\ & =9.44 \end{aligned}$	$\begin{aligned} & 1 \mathrm{E}-14 / 2.8 \mathrm{E}-5 \\ & =3.6 \mathrm{E}-10 \mathrm{~mol} / \mathrm{L} \\ & \text { OR } \\ & 10^{-9.44} \end{aligned}$	$\begin{aligned} & =10^{-4.56}=2.8 \mathrm{E}- \\ & 5 \mathrm{~mol} / \mathrm{L} \\ & \text { OR } \\ & 1 \mathrm{E}-14 / 3.6 \mathrm{E}-5 \end{aligned}$	4.56	B
$\begin{aligned} & \text { 2) } 14-4.910 \\ & =9.090 \end{aligned}$	$8.13 \times 10^{-10} \mathrm{~mol} / \mathrm{L}$	1.23×10^{-5}	$\begin{gathered} -\log (1.23 \mathrm{E}-5) \\ =4.910 \end{gathered}$	B
3) 7.449	3.56×10^{-8}	$2.81 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$	6.551	B
4) 12.8	$2 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$	6. $\times 10^{-2} \mathrm{~mol} / \mathrm{L}$	1.2	B
5) 3.52	$3.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$	$3.3 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$	10.48	A
6) 13.759	1.74×10^{-14}	5.74×10^{-1}	0.241	B
7) 6.55	2.8×10^{-7}	3.5×10^{-8}	7.45	A
8) 2.399	3.99×10^{-3}	2.51×10^{-12}	11.601	A
9) 12.77	1.7×10^{-13}	5.9×10^{-2}	1.23	B
10) 5.95	1.1×10^{-6}	8.9×10^{-9}	8.05	A

4. What color would the indicator be given the following data:

	ORANGE IV	METHLY RED	PHENOL RED	METHYL ORANGE	$\begin{aligned} & \text { INDIGO } \\ & \text { CARMINE } \end{aligned}$
$\begin{aligned} \mathrm{pOH} & =9.00 \\ \mathrm{pH} & =5.00 \end{aligned}$	yellow	Red + Yellow = orange	yellow	yellow	blue
$\mathrm{pH}=8.3$	Yellow	Yellow	Red	Yellow	Blue
$\begin{gathered} {[H+]=9.5 \times 10^{-4}} \\ \mathrm{pH}=3.02 \end{gathered}$	Yellow	Red	Yellow	Red	Blue
$\begin{gathered} {[\mathrm{OH}-]=5.6 \times 10^{-3}} \\ \mathrm{pOH}=2.25 ; \mathrm{pH}= \\ 11.75 \end{gathered}$	Yellow	yellow	Red	Yellow	Blue + yellow = green
$\left[\mathrm{H}_{3} \mathrm{O}+\right]=1.0 \times 10^{-7}$	Yellow	Yellow	Yellow to red = orange	Yellow	Blue

