CHEMISTRY 20 - UNIT 1

REVIEW FROM SCIENCE 10: (Chapter 1)

- A. Definition of Chemistry:
 - -study of the composition of substances and the changes they undergo.
- -Types: Organic, Inorganic, Analytical, Physical, Biochemistry B. Six stages of the Scientific Process:
 - 1. Defining the Problem
 - 2. Proposing Ideas Background info., Hypothesis, Prediction
 - 3. Designing Experiments
 - 4. Observing & Measuring
 - 5. Processing the Evidence/Data charts, tables, graphs
 - 6. Interpretation of Evidence/Data conclusions, error, further study

NOTE: Theories vs. Laws

A theory explains the results and a law describes the results C. Properties of Matter

- 1. Matter:
 - anything that takes up space & has mass. Light & Heat are <u>NOT</u> examples of Matter.
- 2. Mass: the amount of matter
- 3. Substance: matter with a uniform & definite composition
 - a. Elements
 - b. Compounds
- 4. <u>Physical properties</u>: condition that can be observed or measured.
- 5. States of matter:
 - Solid: definite shape & volume
 - Liquid: flows & has a fixed volume-takes the container's shape. Aqueous solutions are liquids that contain water.
 - Gas: takes the shape & volume of the container, expands & compresses easily. Vapor is a gas that is a liquid or solid at room temperature.

- 6. Mixtures: blend of two or more substrates
 - a. heterogenous: not uniform (cement)
 - b. homogenous: uniform solutions (salt water)

D. Atomic Structure

- 1. Dalton's Atomic Theory
 - a. All elements are composed of atoms
 - b. atoms of the same element are identical; atoms of one element are different from atoms of another element.
 - c. atoms of different elements combine to form compound
 - d. atoms can be separate, joined or rearranged by chemical reactions.
- 2. Structure of Atoms. Atoms are made up of:
 - Electrons: small negatively charged particles found around the nucleus of the atom in distinct energy levels.
 - Protons: positively charged particles found in the nucleus. The # of protons in an atom remains constant.
 - Neutrons: particles with no charge found in the nucleus. Protons & neutrons make up most of the mass of the atom.
- 3. Definitions (Look at the examples on the board)
 - Isotopes: atoms that have the same # of protons & electrons but different # of neutrons
 - Atomic number: Number of protons in the atom

If an atom is neutral than the proton # = electron #

- Atomic mass: the average mass of all the isotopes
- Mass number: Number of protons + neutrons
- E. Periodic Table (Write down information on the table handout)
 - Columns (from left to right) are called Groups/Family
 - Elements are grouped according to similar properties
 - Rows (up and down) are called Periods
 - Elements are arranged horizontally by increasing atomic #
 - 1. Metals

Location: left side of the stair case

State: solid at room temperature except mercury(l)

Properties: conducts electricity, ductile(flexible),

Malleable(hammered) & has luster

Group names:

- Alkali metals (Group 1A) soft & react with H₂O
- Alkaline earth metals (Group 2A)-light & form oxides
- Transition metals (All the Group B's) Include the rare earths/lanthanide(58-71), actinide(90-103) & synthetics (93 and up)

2. Nonmetals

Location: right side of the stair case

State: gases, brittle solids, & liquids (Br) at room temp

Properties: poor electric conductors, non-lustrous

Group names:

- Halogen gases (Group 7A)-reactive
- Noble gases (Group 8A)-inert gases, little activity
- 3. Metalloids or Semimetals

Location: on the stair case (B,Si,As,Te,At,Ge,Sb,Po)

State: solid at room temperature

Properties: have properties of both metals & nonmetals

- F. Ions: Elements on the Periodic table that lose or gain electrons
 - 1. Cations: lose electrons and are positively charged (metals)
 - 2. Anions:gain electrons and are negatively charged(non-metal
 - 3. Valence electrons: outermost electrons that are lost or gain
 - 4. Electron energy levels (Look at the diagrams on the board)

1st level & Period 1 on the Periodic table have up to 2e-

2nd level & Period 2 have up to 8e-

3rd level & Period 3 have up to 8e-

4th level & Period 4 have up to 18e-

5th level & Period 5 have up to 18e- etc.

- G. Nomenclature: naming compounds(Look at examples on board)
 - 1. Ionic compounds
 - made up of metals(positive) and non metals(negative)
 - the ionic bond is due to attraction of opposite charges
 - conduct electricity & transfer electrons
 - solid at room temperature
 - a. Binary ionic compounds

- Formula-metal appears first & charges must be neutral
- *Naming*:metal's name+ non metal's name less end+ ide e.g. Ca²⁺ & Cl⁻ = CaCl₂ called *calcium chloride*
- b. Multiple charges include a Roman Number to represent the charge. e.g. *copper(II) sulfate*
- c. Polyatomic ions complex ions on Periodic table are considered one ion. e.g. Na(NO₃)(s) called *sodium nitrate*

d. Hydrated compounds - decompose at low temperatures

Prefixes

mono, di, tri, tetra to produce water & ionic compounds.

penta, hexa, hepta octa, nona, deca *Naming*: Ionic name + prefix + hydrate

- e.g. CuSO₄.H₂O is called *copper(II)* sulfate monohydrate
- 2. Acids: Ionic compounds that produce <u>hydrogen ions</u>(H+, H₃O+) when dissolved in water (aq)
 - a. If the ion ends in "ide" ---- hydro(anion root)ic acid e.g. hydrogen sulfide = hydrosulfuric acid
 - b. If the ion ends in "ite" ---- (anion root)ous acid e.g. hydrogen sulfite = sulfurous acid
 - c. If the ion ends in "ate" ---- (anion root)ic acid e.g. hydrogen sulfate = sulfuric acid
- 3. Molecular compounds
 - composed of two or more non-metals who share e-
 - have low melting and boiling points & are (s), (l) or (g)
 - DO NOT use ionic charges; DO NOT lose or gain e-
 - *Naming*:prefix+1stelement + prefix+2ndelement root+ide NOTE: Do not use mono for first name e.g. CO_(g) is called monocarbon monoxide CO_{2(g)}, P₄O_{10(g)}
 - COMMON NAMES:

 $H_2O_{(8)(1)(g)}=$ water; $O_{3(g)}=$ ozone; $CH_{4(g)}=$ methane (natural gas); $CH_3OH_{(1)}=$ methanol $C_6H_{12}O_{6(s)}=$ glucose; $C_{12}H_{22}O_{11(s)}=$ sucrose; $NH_{3(g)}=$ ammonia, $H_2O_2=$ hydrogen peroxide; $C_2H_{6(g)}=$ ethane; $C_2H_5OH_{(1)}=$ ethanol; $C_2H_{4(g)}=$ ethene or ethylene; $C_2H_{2(g)}=$ ethyne or acetylene; $C_3H_8(g)=$ propane; $C_6H_6(g)=$ benzene; $C_4H_{10}(g)=$ butane; $C_8H_{18}(l)=$ octane

- Diatomic molecules: N2, O2 F2, Cl2, Br2, I2, At2, H2
- . e.g. O2=oxygen gas
- Polyatomic molecules: molecular compounds with many of the same element. e.g. S₈(sulfur) & P₄(phosphorous)