## Chemistry 20 Science 10 Review

Name $\qquad$ Date $\qquad$
After you complete each section, check your answers with the answer key. If you don't understand the mistakes you made, ask your teacher for help with this section.
A. Classification of Matter: Matter is anything that has mass and takes up space. Matter can be classified according to its properties.

1. Fill out the chart below that shows some of the classifications of matter.

B. Arrangement of the Periodic Table Examine the periodic table in your Data Booklet. It is important to understand how the table is arranged in order to be able to use it effectively. The horizontal rows are called periods. Elements in the same period have the same number of electron shells or orbitals. The vertical rows are called groups or families. Elements in the same group or family have similar chemical properties.
2. Name the elements that are in the same period as silicon $(\mathrm{Si})$.
3. Name the elements that are in the same family (group) as bromine $(\mathrm{Br})$.

Examine the key box in the lower left of the periodic table. It tells the kind of information that is given about each substance. Note that the top half of each box gives information about elements while the lower half gives information about ions. Ion symbols are always written with a charge in the superscript (exponent) position. Element and ion symbols always begin with a capital (upper case) letter. This capital letter may or may not be followed by one or two small (lower case) letters. You should memorize the names (correctly spelled) and symbols of elements $\mathbf{1 - 2 0}$. No capitals with names.
3. Write the symbols of the following elements.
hafnium
$\qquad$ silver $\qquad$
4. Write the element names for the following symbols.
B
Cl $\qquad$

Au $\qquad$ K $\qquad$
5. Write the symbols for the following ions.
barium $\qquad$ phosphide $\qquad$ sodium $\qquad$ hydride $\qquad$
6. Write the ion names of the following symbols.
$\mathrm{H}^{+}$
$\mathrm{Au}^{3+}$ $\qquad$ $\mathrm{O}^{2-}$ $\mathrm{As}^{3-}$
$\qquad$
7. Which elements in the periodic table seldom form ions? (HINT: Which elements do not have charges)

Substances on the periodic table each have two numbers. The atomic number tells the number of protons that an element or ion contains. The atomic mass number tells the mass of an atom of an element.
8. Write the atomic numbers of the following elements.
. How many protons does $\overline{\text { an atom }}$ of each of the following elements contain?
oxygen $\qquad$ Zn $\qquad$ manganese $\qquad$ F $\qquad$ lead $\qquad$
10. Write the atomic mass of each of the following elements. aluminum $\qquad$ P chromium $\qquad$ S $\qquad$
11. Identify the elements with the following atomic masses.

$$
1.01
$$

22.99 $\qquad$ 4.00

* Check your answers in the answer key.


## C. Atomic Structure and the Periodic Table

An atom is the smallest neutral particle of an element that can exist and still have all the properties of that element. Atoms, in turn, consist of smaller particles: protons, neutrons and electrons. The small, extremely dense center of an atom is called the nucleus and contains protons which have a positive charge and neutrons which have no charge. A large electron "cloud" circles the nucleus and consists of rapidly moving, highly energetic electrons which have a negative charge. Because a atom is neutral, it is made up of equal numbers of electrons and protons

1. The atomic number tells the number of $\qquad$ in an atom.
2. The atomic number may also tell how many $\qquad$ an atom has.
3. Fill in the following chart.

| element name | element <br> symbol | atomic <br> number | number of <br> protons | number of <br> electrons |
| :---: | :---: | :---: | :---: | :---: |
| sulphur |  |  |  |  |
|  | N |  |  |  |
|  |  |  | 21 |  |

Each proton and each neutron has an atomic mass of 1 a.m.u. (atomic mass unit). Electrons are so incredibly small that their mass contribution to an atom is negligible. For our purposes, the atomic mass of an atom of an element is equal to the sum of the masses of its protons and neutrons. To determine the number of neutrons in an atom, subtract the number of protons from the atomic mass number.

## \# of neutrons = atomic mass number - \# of protons

Note that the atomic mass of most elements is not a whole number. This is because the number of neutrons can vary from one atom of an element to another of the same element. Variations in the number of neutrons in elements are called isotopes. The atomic mass number is an average of the atomic masses of all the isotopes of an element. When using atomic mass numbers to determine the number of neutrons in an atom of an element, round the atomic mass number to the nearest whole number.
4. How many neutrons does an atom of each of the following elements contain?

Al $\qquad$ tin $\qquad$ I $\qquad$ platinum $\qquad$
5. Fill in the following chart

| element name | element <br> symbol | atomic <br> number | mass <br> number <br> (a.m.u.) | number <br> of protons | number of <br> neutrons | number of <br> electrons |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gold |  |  |  |  |  |  |
|  | C |  |  |  |  |  |
|  |  | 19 |  |  |  |  |

Some elements are not found in single atoms. The atoms of these elements travel in groups and the symbols always indicate this condition. You must memorize these polyatomic and diatomic elements. ("Poly" means many and "di" means two.)
6. Write down the names and symbols of the elements which are polyatomic and diatomic.

Electrons travel in orbitals or shells around the nucleus of an atom. Each orbital can contain a maximum number of electrons. The first orbital, the K-shell, can hold a maximum of 2 electrons. The first period (horizontal row) on the periodic table contains the elements which only have electrons in the K-shell. Hydrogen has one electron and is at the top of the first group or family. All members of this group, 1 or 1 A , have only one electron in their outermost shell. Helium has two electrons and is at the top of the last group or family. All members of this group, VIIIA or 18, have completely filled outer shells. The second orbital, the $\mathbf{L}$-shell can contain a maximum of 8 electrons. All members of the second period have a full K-shell plus one or more electrons in the L-shell. The third orbital, the Mshell, also can contain a maximum of 8 electrons. All elements in the third period have full K- and Lshells plus one or more electrons in the M -shell. There are two main ways to represent these atoms and their orbitals. The Bohr diagram has a central circular nucleus with the correct number of protons ( $p+$ ) and neutrons ( n ) placed in the middle for that element. Surrounding the nucleus are circles representing the orbitals with the correct number of electrons (e-) placed in each orbital as dots. The Energy level diagram has a circular nucleus with the correct number of protons ( $\mathrm{p}+$ ) and neutrons ( n ) placed in the middle for that element. ABOVE the nucleus the number of electrons are written for each orbital starting with the K-shell. Below are an example of each diagram for element sodium.
sodium: Bohr diagram


Energy Level Diagram
$1 \mathrm{e}-$ 8e-
$2 \mathrm{e}-$

7. Draw the Bohr diagram \& energy level diagram for each of the following elements. beryllium silicon oxygen
8. List all the elements that have one less electron than needed to have a full shell.

Periods greater than number three have complex arrangements of electrons that you don't need to learn about. But, in each of these periods the number used for a full shell is $\mathbf{8}$ electrons. Look at the staircase line that starts at Boron, B. Elements to the left of the staircase are called metals because they have less than 4 electrons in their outer shell. Elements to the right of the staircase are called non-metals because they have more than 4 electrons in their outer shell. There are some elements that have four electrons in their outer shell and these are classified as either metals or nonmetals depending upon other characteristics. Always check the periodic table when you need to know if an element is a metal or a non-metal.
9. Put a "M" beside the metal elements and an "N" beside the non-metal elements.
Li $\qquad$ Kr $\qquad$ Au
Se $\qquad$

* Check your answers in the answer key.


## D. Ions

Atoms prefer to have full outer shells. For this reason, atoms tend to lose or gain electrons to form ions. Remember that atoms are neutral because they contain equal numbers of electrons (negative) and protons (positive). An ion of an element has a charge, either positive or negative, because the number of electrons has changed. Atoms will either gain or lose the fewest number of electrons needed to have a full outer ring. Metallic ions form when metals lose electrons. Because the number of protons always stays the same in the nucleus, metallic ions have a net positive charge and are called cations. Non-metallic ions form when non-metals gain electrons. Because the number of protons always stays the same in the nucleus, non-metallic ions have a net negative charge and are called anions. Metals in group !A all lose one electron while metals in group IIA all lose two electrons. This same pattern follows for all metals. Non-metals in group VA all gain three electrons; those in VIA gain two electrons; those in VIIA gain three electrons. All ions use the element symbol with the charge (negative/positive) and number in the superscript (exponent) position, e.g. $\mathrm{Ca}^{2+}$. The number always comes before the charge ( $+/-$ ). Ions have different physical and chemical properties than atoms.

1. Draw the Energy Level diagrams for the following: $\mathrm{Li}, \mathrm{Li}^{1+} \mathrm{S}, \mathrm{S}^{2-}$

Some elements do not form ions. Look at boron, carbon, and silicon. Note that these nonmetals, although they do not have full shells, do not form ions. These elements will, however, take part in chemical reactions and form compounds
Look at group VIIA or 18. All the elements in this group already have complete outer shells. These elements usually do not take part in chemical reactions and do not usually form compounds. Only under extreme laboratory conditions can these inert elements react.
2. List symbols of the inert gases.
*Check your answers in the answer key

## E. Metallic and Non-metallic Ions Form Ionic Compounds

Ions that have opposite charges are attracted to each other. Metallic ions and non-metallic ions will form ionic bonds to create ionic compounds. The total number of protons and electrons in ionic compounds is equal and thus ionic compounds are neutral. For example, $\mathrm{Na}^{+}$and $\mathrm{Cl}^{-}$will bond together to form NaCl , a neutral ionic compound. NaCl has different chemical and physical properties than either $\mathrm{Na}^{+}$or $\mathrm{Cl}^{-}$. The formula of an ionic compound always have the metallic ion first and the non-metallic ion second. Ionic compounds are named by writing the metallic ion name first, leaving a space, and writing the non-metallic ion name second. Check the periodic table for the names of the ions. For example, the name of NaCl is sodium chloride. Note that all ionic compounds involving only two elements always have the name ending in -ide. Ionic compounds never use numerical prefixes.
2. Fill in the chart below with the chemical formulas and names of the ionic compounds formed.

| metallic ions <br> nonmetallic ions | $\mathrm{Li}^{+}$ <br> formula and name | $\mathrm{Na}^{+}$ <br> formula and name |
| :---: | :---: | :---: |
| $\mathrm{H}^{-}$ |  |  |
| $\mathrm{F}^{-}$ |  |  |
| $\mathrm{Cl}^{-}$ |  |  |

Always choose the smallest number of positive and negative ions to make a neutral formula. For example, $\mathrm{Mg}^{2+}$ and $\mathrm{O}^{2-}$ form MgO , magnesium oxide. If the charge on the two ions is not the same, e.g. $\mathrm{Li}^{+}$and $\mathrm{O}^{2-}$, use least common multiples to determine how many of each ion are needed to make a neutral formula. The LCM of 1 and 2 is 2 . Therefore 2 positive and 2 negative charges are needed: $\mathrm{Li}^{+}$ and $\mathrm{Li}^{+}$and $\mathrm{O}^{2-}$. The formula is written $\mathrm{Li}_{2} \mathrm{O}$. The subscript number indicates the number of ions of the previous element.
3. Write the formulas and names of the ionic compounds formed from the following ions.

> formula name

$$
\begin{aligned}
& \mathrm{Na}^{+} \text {and } \mathrm{P}^{3-} \\
& \mathrm{Mg}^{2+} \text { and } \mathrm{S}^{2-} \\
& \mathrm{Al}^{3+} \text { and } \mathrm{O}^{2-}
\end{aligned}
$$

Some metallic elements can rearrange their electrons so that more than one ion can form. Look at elements numbered $22-29,41,44,46,50,51,78-84$. Note that each of these has two possible ions. In order to differentiate when naming compounds, a Roman numeral is placed in brackets after the ion name. If the charge is $1+$, the Roman numeral is I; if the charge is $2+$, the Roman numeral is II; if the charge is $3+$, the Roman numeral is III etc. If oxygen combines with iron, there are two possible types of iron oxide: iron (II) oxide and iron (III) oxide.
4. Write the formulas and names formed from the following ions. Be sure to include Roman numerals when more than one ion of an element exists.
formula name

$$
\begin{gathered}
\mathrm{Ti}^{3+} \text { and } \mathrm{S}^{2-} \\
\mathrm{Co}^{2+} \text { and } \mathrm{As}^{3-} \\
\text { *Check your answers in the answer key. }
\end{gathered}
$$

## F. Polyatomic (Complex) Ions

Some ions form groups called complex ions also known as polyatomic ions on your periodic table. The complex ions form bonds so strong they act as if they were single ions. Like single ions, complex ions have a charge. There is only one positive complex ion: $\mathbf{N H}^{+}$, named ammonium. As it has a positive charge, ammonium will always be the first ion in an ionic compound. All the other complex ions have negative charges. They will always come after the positive ion in an ionic compound. The names are given in your periodic table. Note that most of the negative complex ions contain oxygen as the last element. The names of these always end in either -ate or -ite. There is one negative complex ion without the -ate/-ite name ending. It is $\mathbf{O H}^{-}$and is called hydroxide. Formulas of compounds containing complex ions are written in and named in the same way as other ionic compounds. 1. Write formulas and names for the ionic compounds formed from the following ions.

| Metalic ions | $\mathrm{K}^{+}$ | $\mathrm{H}^{+}$ | $\mathrm{Na}^{+}$ |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| nonmetallic ions | name and formula | name and formula | name and formula |
| $\mathrm{OH}_{3}^{-}$ |  |  |  |
| $\mathrm{NO}_{2}^{-}$ |  |  |  |

When more than one complex ion is required to balance a formula, brackets need to be used with a subscript outside to indicate how many complex ions are needed. For example: $\mathrm{Ca}^{2+}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$ form calcium acetate with a formula $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$. The subscript 2 indicates two entire acetate ions are needed.
2. Write formulas and names for the ionic compounds formed from the following ions. formula name

$$
\mathrm{Ca}^{2+} \text { and } \mathrm{OH}^{-}
$$

$$
\mathrm{Al}^{3+} \text { and } \mathrm{CrO}_{4}^{2-}
$$

*Check your answers with the answer key.

## G. Covalent Molecular Compounds

Some non-metals form compounds in which electrons are shared rather than lost or gained as in ionic compounds. These compounds are called covalent molecular compounds and always involve only two non-metallic elements. The first element in the compound retains its atomic name. The second element's name ends in -ide. Prefixes are always used to tell how many atoms of the second element are in the compound. When more than one atom of the first element named is used, prefixes are also used. Examples: $\quad \mathrm{CO}$ carbon monoxide $\quad \mathrm{CO}_{2}$ carbon dioxide $\quad \mathrm{P}_{2} \mathrm{~S}_{5}$ diphosphorus pentasulphide

1. Name the following compounds.
$\mathrm{CS}_{2}$
$\mathrm{SO}_{2}$
$\mathrm{CBr}_{4}$
$\mathrm{P}_{2} \mathrm{O}_{5}$
2. Write the formulas of the following compounds

## carbon tetrachloride

nitrogen trichloride
phosphorus pentabromide
*Check your answers in the answer key
H. Naming Acids - optional section. (Check with your teacher before doing this section.)

Ionic compounds that contain hydrogen as the non-metallic ion form acids when they are dissolved in water. There is a special naming system for these. The first step is to write the ionic compound name as you have already learned to do it. If there are only two elements in the acid, then the name hydrogen becomes hydro- and the second element's name ends in -ic. Both element names form one word. The word acid is added separately at the end. Eg ) HCl has the ionic name of hydrogen chloride. The acid name is hydrochloric acid.

1. For each of the following compounds, give the ionic compound name and the acid name.

> ionic name acid name
HBr
HI
$\mathrm{H}_{2} \mathrm{~S}$
HF

Acids which contain complex ions are a little more difficult to name. All of these acids drop the hydrogen name. If the suffix of the complex ion was -ite, the acid name ends in -ous. The word acid is added separately at the end. For example: $\mathrm{H}_{2} \mathrm{SO}_{3}$ has the ionic name of hydrogen sulphite. The acid name is sulphurous acid.
2. For each of the following compounds, give the ionic compound name and the acid name. ionic name acid name
$\mathrm{HNO}_{2}$
$\mathrm{HClO}_{2}$

If the suffix of the complex ion was -ate, the acid name ends in -ic. The word acid is added separately at the end. Eg ): $\mathrm{H}_{2} \mathrm{SO}_{4}$ has the ionic name hydrogen sulphate. The acid name is sulphuric acid.
3. For each of the following compounds, give the ionic compound name and the acid name. ionic name acid name
$\mathrm{HNO}_{3}$
$\mathrm{HClO}_{3}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$
*Check your answers in the answer key.

## I. Chemical Reactions and Equations

Chemical equations are used to show what happens in a chemical reaction.
Most chemical equations have the following format.
reactants $\rightarrow$ products
Chemical equations must be balanced in order to show that matter is conserved. This means that there must be exactly the same number of atoms/ions of each type of element on both sides of the equation.
For example: $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
The large coefficient number tells how many atoms or molecules are used/produced. In the equation above, 2 sodium atoms react with one chlorine molecule. (Remember that chlorine is a polyatomic element and occurs in molecules made up of 2 atoms,) Two molecules of sodium chloride are produced.
To check if an equation is balanced, list the elements and the number of ions/atoms.
For example: $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$

| Na | 2 | Na | 2 |
| :--- | :--- | :--- | :--- |


| Cl | 2 | Cl | 2 |
| :--- | :--- | :--- | :--- |

Another example: $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{Na} \rightarrow 2 \mathrm{NaOH}+\mathrm{Mg}$

| Mg | 1 | Mg | 1 |
| :--- | :--- | :--- | :--- |
| OH | 2 | OH | 2 |
| Na | 2 | Na | 2 |

*Note that is the complex ion is unchanged, it can be listed as a single ion

1. Which of the following equations are balanced?

$$
\begin{array}{lr}
\mathrm{S}_{8}+12 \mathrm{Cl}_{2} \rightarrow 8 \mathrm{SCl}_{3} & \text { balanced? } \\
2 \mathrm{C}_{8} \mathrm{H}_{18}+24 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} 0 \text { balanced? }
\end{array}
$$

There are five basic types of chemical reactions that you must be able to recognize:
simple composition or synthesis
element + element $\rightarrow$ compound
$A+B \rightarrow A B$
simple decomposition
compound $\rightarrow$ element + element
$\mathrm{AB} \rightarrow \mathrm{A}+\mathrm{B}$
single replacement
compound + element $\rightarrow$ compound + element
$\mathrm{AB}+\mathrm{C} \rightarrow \mathrm{AC}+\mathrm{B}$ (either the two metals or the two non-metals trade places)
double replacement
compound + compound $\rightarrow$ compound + compound
$\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{BC}$ (either the two metals or the two non-metals trade places)
hydrocarbon combustion
hydrocarbon $+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

1. Classify each of the following reactions.

$$
\begin{gathered}
\mathrm{Mg}+\mathrm{I}_{2} \rightarrow \mathrm{MgI}_{2} \\
\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{KOH} \rightarrow \mathrm{~K}_{2} \mathrm{~S}+2 \mathrm{HOH} \\
\mathrm{CaCl}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{CaBr}_{2}+\mathrm{Cl}_{2} \\
\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{Na}_{2} \mathrm{~F} \rightarrow 4 \mathrm{Na}+\mathrm{F}_{2} \\
\text { *Check your answers in the answer key. }
\end{gathered}
$$

## J. Molar Mass and the Mole

The molar mass of an element is the atomic mass expressed in grams. One molar mass is called a mole. For example, the atomic mass of lithium is 6.94 and its molar mass is 6.94 g . For a compound, the molar mass is equal to the sum of all the atomic masses of the elements making up that compound. For example sodium chloride NaCl has a molar mass equal to 22.99 g for $\mathrm{Na}+35.45 \mathrm{~g}$ for Cl . This adds up to 58.44 g for one mole of NaCl . We need to know molar mass in order to determine the mass of reactants and products in a chemical reaction.

1. Calculate the mass of one mole of each of the following elements or compounds.
$\mathrm{O}_{2}$
$\mathrm{CCl}_{4}$ $\qquad$ g
Ca
P4
g
$\mathrm{CCl}_{4}$ $\qquad$ g

$$
1.01 \mathrm{~g} ?
$$

$$
196.97 \mathrm{~g} ?
$$

$\qquad$
3. If you have 36.03 grams of carbon, how many moles do you have? Use $n=m / M$
*Check you answers in the answer key.

## K. WHMIS Symbols

You must know all the NEW ( ${ }^{\text {st }}$ picture) \& OLD ( $2^{\text {nd }}$ picture)WHMIS symbols.

1. WHMIS stands for
2. Write one example of where you might find each WHMIS symbol.

|  | Exploding bomb (for explosion or reactivity hazards) |  | Flame (for fire hazards) |  | Flame over circle (for oxidizing hazards) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gas cylinder (for gases under pressure) |  | Corrosion (for corrosive damage to metals, as well as skin, eyes) |  | Skull and Crossbones (can cause death or toxicity with short exposure to small amounts) |
|  | Health hazard (may cause or suspected of causing serious health effects) |  | Exclamation mark <br> (may cause less serious health effects or damage the ozone layer*) |  | Environment* <br> (may cause damage to the aquatic environment) |
| $\left(\frac{2}{3}\right.$ | Biohazardous Infectious Materials <br> (for organisms or toxins that can cause diseases in people or animals) |  |  |  |  |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Class A: <br> Compressed Gas | ClassB: <br> Flammable and Combustable Material | Class C: <br> Oxidizing <br> Material | Class D: <br> Poisonous and Infectious Materials Division 1-Immediate and Toxic effects |
|  |  |  |  |
| Class D: <br> Poisonous and Infectious Materials Division 2-Materials Causing Other Toxic Effects | Class D: Poisonous and Infectious Materials Division 3-Biohazardous Infectious Materials | Class E: Corrosive Materials | Class F: <br> Dangerously Reactive Materials |

## L. SKILL \#1: Significant Digits \& Unit Conversions

Name:
Due Date:
Score:

## Definition of Significant digits

Significant digits indicate how accurate a measurement is. Significant digits are the digits that are certain plus one uncertain digit (the last digit). Significant digits are NOT defined as important digits.

## Counting Significant Digits

When counting significant digits, count all the digits from 1 to 9 plus zeroes in between and zeroes following these digits. DO NOT count zeroes in front of a 1 to 9 because they only serve to set the decimal place.
Constants and exact numbers have infinite number of significant digits.
ie) 0.02050 kg The two zeros in front are NOT significant. This number has 4 significant digits.

$$
\mathrm{x} \times \sqrt{ } \sqrt{ } \sqrt{ }=\text { significant digit } \mathrm{x}=\text { not significant digit }
$$

## Rounding off when using significant digits

When the next digit (after those that are kept as significant) is less than 5 , all the digits remain the same. When the next digit is 5 or greater, the last digit that is kept is increased by one.
Ie.) 19.95 m with 3 significant digits would be rounded off to 20.0 m . 129.49 g with 3 significant digits would be not be rounded off and remain 129 g

## Scientific notation

Scientific notation is the method of expressing values as a number between 1 and 10 multiplied by a power of ten. (\#.\#\# x $10^{\#}$ ) Scientific notation is used for very large numbers or very small numbers with a few significant digits.
Ie) 1490 m with 2 significant digits would be expressed as $1.5 \times 10^{3} \mathrm{~m}$ The decimal moved 3 places to the left
0.0015678 g with 1 significant digit would be expressed as $2 \times 10^{-3} \mathrm{~g}$ The decimal moved 3 places to the right.

NOTE: There is always only one digit (other than 0) and then the decimal when using scientific notation. The digits in $10^{\#}$ are not significant.

## SI (System International) Prefixes \& Unit Conversions

SI prefixes are often used to replace the power of ten in scientific notation. Here are the most common prefixes. These and other prefixes are also located in your databook on page 1.

$$
\begin{array}{lc}
\operatorname{Giga}(G)=10^{9} & \text { centi }(c)=10^{-2} \\
\operatorname{Mega}(M)=10^{6} & \text { milli }(\mathrm{m})=10^{-3} \\
\text { Kilo }(k)=10^{3} & \text { micro }(u)=10^{-6}
\end{array}
$$

Scientists need to be able to convert from one prefix to another.
Ie) $1.5 \times 103 \mathrm{~m} \rightarrow 1.5 \mathrm{~km} \quad 2 \times 10^{-3} \mathrm{~g} \rightarrow 2 \mathrm{mg}$

## Addition \& Subtraction significant digit rules

Add/subtract and then round off the answer to the least number of decimal places contained in the question.
Ie) $26.5 \mathrm{~m}+7.01 \mathrm{~m}=33.51 \mathrm{~m}$ Rounded $=33.5$
( 1 dec. ) ( 2 dec .) ( 1 dec .)

## Multiplication \& Division significant digit rules

Multiply/divide and then round off the answer to the least number of total significant digits contained in the question. Decimal places are NOT considered for significant digits when you multiply or divide.
Ie) $100 \mathrm{~s} \mathrm{x} 5.0 \mathrm{~m} / \mathrm{s}=500 \mathrm{~m} \quad$ Rounded $=5.0 \times 10^{2} \mathbf{m}$
dig)

1. Identify how many significant digits are in each of the following measurments:

Ie) $\mathbf{0 . 0 0 5 0 6 0} \mathbf{4}$ significant digits (zeros in front of the $\mathbf{5}$ are not significant)
a. 15.8 g $\qquad$ b. $0.167 \mathrm{~m} / \mathrm{s}$
$\qquad$
c. $1.50 \mathrm{~km} / \mathrm{h}$ $\qquad$ d. $23.005 \mathrm{~g} / \mathrm{L}$ $\qquad$
e. $0.0061 \mathrm{~mol} / \mathrm{L}$ $\qquad$ f. $1.54 \times 10^{6} \mathrm{~km}$ $\qquad$
g. 1200 cm $\qquad$ h. $5.00 \times 10^{-3} \mathrm{t}$ $\qquad$
i. 0.08 hectares $\qquad$ j. 14.03 C $\qquad$
2. Perform the following calculations.

1e. 3.7 Unrounded $6.03 \times 10^{3} g$

SI Prefix
Ie. $35.7 \mathrm{~mol} \times 168.92 \mathrm{~g} / \mathrm{mol}=$ $6030.44 g$ SI Prefix
a. $\quad \mathbf{1 6 . 7 5} \mathrm{s} \mathrm{x} 85 \mathrm{~m} / \mathrm{s}$ $\qquad$
$\qquad$
$\qquad$
b. $\quad 0.00085 \mathrm{~L} \times 1.3111 \mathrm{~g} / \mathrm{L}$
$=$ $\qquad$
$\qquad$
$\qquad$
c. $\quad \mathbf{0 . 0 0 0 1 1 8 ~ \mathbf { m o l } \times 1 8 . 0 2 \mathrm { g } / \mathrm { mol }}$
$=$ $\qquad$
$\qquad$
d. $\quad \mathbf{0 . 1 2 \times 1 0} \mathbf{~} \mathbf{~ m o l ~} \times 22.4 \mathrm{~L} / \mathbf{m o l}$
$\qquad$
$\qquad$
$\qquad$
e. $\quad \mathbf{0 . 1 7 8} \mathbf{g} / \mathbf{1 2 . 0 1} \mathbf{g} / \mathbf{m o l}$
f. $\quad 0.1456 \mathbf{m o l} / 2.3 \mathrm{~L}$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
g. $\quad 452.65 \mathrm{~g} / 58.06 \mathrm{~g} / \mathrm{mol}$ $\qquad$
$\qquad$ XXXXXXXXXXX
h. $1.12 \times 10^{-5} \mathrm{~mol} / 2.5 \mathrm{~mol} / \mathrm{L}$
i. $\quad 1.28 \times 10^{6} \mathrm{~g} \mathrm{x} 3.33 \times 10^{3} \mathrm{~J} / \mathrm{g}$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
j. $\quad 0.0088 \mathbf{m o l} / 179 \mathrm{~L}$
k. $\quad \mathbf{7 6 0} \mathrm{m}+\mathbf{4 2 . 6} \mathrm{m}$
$=$
$\qquad$
$\qquad$

1. $\quad \mathbf{9 . 9 9} \mathbf{~ m o l}+\mathbf{1 5 1 0 . 9} \mathbf{~ m o l}$ $\qquad$
m. $\quad 14.76 \mathrm{~mL}-4 \mathrm{~mL}$
$=$ $\qquad$
n. $\mathbf{1 2 9} \mathrm{g}-\mathbf{2 9 . 5} \mathrm{g}$
$=$ $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ XXXXXXXXXXX
o. CHALLENGE:

942 m-1.2 km
$=$
$\qquad$
$\qquad$

HINT: convert to the highest unit first.

SKILL 2: LAB SAFETY: Learn the safety rules illustrated below.


Proper
supervision
Don't perform lab experiments without instructor
supervision (unless given permission to do sos).
 numbers \& safety equipment
Know the location of safety equipment and emergency phone numbers
Know the location of saiety equipment and emergency phone numbers
(such as poison control) so you can access them quickly if necessary. Lab Safety Rules

Science labs offer great opportunities for learning, teaching, and research. They also pose hazards that require proper safety precautions.



No food
Don't eat or drink in the lab-
and never taste chenicals. and never taste chemicals.

## Be careful when

 handling hot glasswareTurn off all heating appliances when
objects away from your workspace


ID hazards Identify hazardous materials before beginning labs.


Be attentive
Be attentive while in the lab.
Don't leave lit Bunsen burners Don't leave lit Bunsen burners
unattended or leave an experi-
ment in progress.



Identify 5 Safety mistakes in the picture below.


Skill 3: Identify Lab equipment. Describe one use for each of the following pieces of equipment.


