I. Properties
A. Definitions

1. Mixtures:

Solution/ Homogenous mixture:
Solvent:
Solute:
Alloy:
Mechanical mixture/ Heterogenous mixture:
2. Suspension:
3. Colloid:
4. Miscible:
5. Immiscible:
6. Electrolyte:
B. Solubility: amount
ie) $\mathrm{NaCl}: 31.6 \mathrm{~g} / 100 \mathrm{~mL}$ dissolves at O C (in water)
$36.2 \mathrm{~g} / 100 \mathrm{~mL}$ dissolves at 25 C
$39.2 \mathrm{~g} / 100 \mathrm{~mL}$ dissolves at 100 C
Rate Depends on:

1. \qquad : shaking brings solvent into contact with solute. (Does not affect amount that dissolves)
2. \qquad : the larger the \qquad (powder vs solid) the faster the dissolving.
3. \qquad : the higher the \qquad the faster the dissolving
Amount Depends on:
4. \qquad : the higher the temperature the greater the solubility for most substances.
NOTE: Most ___ decrease in solubility with higher temperature. Ie) At 100 C oxygen is insoluble. Water, pop left overnight will not have any gases.
5. \qquad : the greater the pressure the greater the solubility.
Ie) $\mathrm{CO}_{2(g)}$ dissolves in carbonated beverages when under pressure NOTE: : separates compounds in solution depending on:
a) size of molecules - smallest particles on top
b) solubility (Lab) - most soluble on top (picture)
C. Saturation
6. \qquad : a solution that contains the \qquad amount of solute for a given amount of solvent at a constant temperature.
7. \qquad : a solution that does not contain the \qquad amount of solute of a given solvent at a constant temperature.
8. \qquad : a solution that contains \qquad solute than it can hold at a constant temperature. HOW? By \qquad
D. Dissolving process
9. Molecular substances with oxygen in them.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(s)}$--> How?
10. Ionic substances
$\mathrm{NaCl}_{(s)}$-->
How?
II. Molar Concentration
A. Definition-

* Symbol is \qquad or
* Unit is \qquad (moles of solute/Litres of solution)
* Formula \qquad
B. Example of concentration conversions

1. Calculating Concentration from moles and Volume $\mathrm{C}=\mathrm{n} / \mathrm{V}$
Eg)
2. Calculating Concentration from mass and Volume

Step 1. $\mathrm{n}=\mathrm{m} / \mathrm{M}$
Step 2. $\mathrm{C}=\mathrm{n} / \mathrm{V}$
Eg)
3. Other forms of expressing concentration
a) $\mathrm{ppm}=$
b) $\%$ by mass $=$
c) $\%$ by volume $=$
4. Steps to prepare a solution

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

EXAMPLE:

How do I prepare a $100 \mathrm{~mL} 0.400 \mathrm{~mol} / \mathrm{L}$ solution of magnesium sulphate solution in the lab?
III. Dilutions
A. Definitions

1. Dilution:
2. Concentrated:
3. Dilute:
B. Mathematical expression: \qquad ${ }_{1}=$ initial $\quad \&_{2}=$ final
NOTE: $\mathrm{V}_{2}=\mathrm{V}_{1}+\mathrm{V}_{\text {water }}$
Helpful Hints:
C. Example of dilution problems
1)How do you prepare 100 mL 0.40 M magnesium sulphate solution from 100 mL of 2.0 M magnesium sulphate solution.
Step 1:
Step 2:
Step 3.
Step 4.
2) If a student begins with 1000 mL of $1.00 \mathrm{~mol} / \mathrm{L}$ solution and dilutes it to 0.100 mol/L, what volume of water did the student add to dilute the solution?
3) If 100 mL of $1.0 \mathrm{moL} / \mathrm{L}$ solution is added to 900 mL of $0.10 \mathrm{~mol} / \mathrm{L}$ solution what is the resulting concentration?
4) Challenge: If 100 mL of water is added to a $1.00 \mathrm{~mol} / \mathrm{L}$ solution and the resulting solution is $0.250 \mathrm{~mol} / \mathrm{L}$ what was the volume of the original solution used.
D. Pipetting Techniques
1. Definition: technique used to measure out a \qquad of liquid (25 mL or less) to \qquad (0.1 mL to 0.01 mL).
2. Types of pipets (Draw two diagrams)
a. graduated pipet:
b. volumetric pipet:
3. Technique

Step 1: Rinse with \qquad water to remove any residue or liquid
Step 2: Rinse with the \qquad . Why?
Step 3: Hold the pipet near the top with one (left) hand.
Leave your index finger free. Why?
Step 4. Place the pipet into the sample, resting the tip on the of the container.
Step 5: Squeeze the \qquad with your other (right) hand and place the \qquad firmly and squarely on the end of the pipet.
Step 6: Release the bulb until the liquid has risen \qquad the desired calibration line. (May have to do in stages.) Step 7: Remove the bulb and quickly put your \qquad finger of your left hand over the top. (Some have dispensing bulbs) Step 8. Remove from solution and wipe \qquad Why?
Step 9. While touching the tip of the pipet to the inside of a waste beaker, gently \qquad your index finger off to allow the liquid level to drop. Stop by placing your index finger on top when the \qquad reaches the calibration line. (at eye level)
Step 10. Touch the tip of the pipet to the inside wall of the receiving container and remove your finger to allow the liquid to flow freely. A small volume is expected to remain in the \qquad .
IV. Biomagnification \& other risks (OPTIONAL)
V. Dissociation
A. Solubility \& Precipitation reactions

1. Look for the ions in your compound in row I of your solubility table
a. If the other ion is in row II it is soluble and is \qquad in the presence of water. (dissolves) (high solubility)
b. If the other ion is in row III it is not soluble and will form a
\qquad . (solid) (low solubility)
c. If it is not found on the table, assume that it also forms a precipitate.
2. Other terminology

- Hydronium ion:
- Solvation:
- Hydration:
B. Dissociation:
ie) Water dissociates into its ions.

1. More Definitions

- Electrolyte:
- Non-electrolyte:
* Dissociation equations:
- Ionization equations:

2. CAUTIONS: Write a Balanced equation. Remember all ions are aqueous. Show correct ionic charges.
3. EXAMPLES
a) Ionic compounds
$\mathrm{KCl}_{(s)}$
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})}$
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{~s})}$
b) Molecular gases
$\mathrm{HI}_{(\mathrm{g})}$
c) Bases
$\mathrm{NH}_{3(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}$
d) Acids
or $\quad \mathrm{HCl}_{(a q)}+\mathrm{H}_{(a q)} \mathrm{H}_{(g)}$
NOTE: most hydrogen compounds dissolve but don=t completely dissociate except six listed below: These are all strong acids.
$\mathrm{HClO}_{4(\mathrm{aq})}, \mathrm{HI}_{(a q)}, \mathrm{HBr}_{(a q)}, \mathrm{HCl}_{(a q)}, \mathrm{HNO}_{3(a q)}, \mathrm{N}_{2} \mathrm{SO}_{4(a q)}$

C. Equilibrium:

There is a dynamic (happening all the time) equilibrium that exists in a saturated solution since the rate of \qquad is equal to the rate of
\qquad . You observe no change.

Ie)

VI. Net Ionic equations

Soluble compounds such as lead (II) nitrate dissociate upon dissolving in water. When this compounds reacts with another substance, some of the ions react while some ions do not react. Chemists write net ionic equations to show only the ions and compounds that do react in the reaction.
A. Definitions

1) Non ionic equation
2) Total ionic equation
3) Net ionic equation
B. Steps involved
4) Write out a nonionic equation
5) Change all aqueous compounds into their ions and write out the total ionic equation.
6) Cross off any ions that appear as reactants and products. Make sure that they appear as ions on both sides of the equation and that their coefficients are the same. Write out your new net ionic compound.
VII. Solution Stoichiometry

STEP 1:
STEP 2:
STEP 3:
STEP 4:
STEP 5:

1) If 200 mL of sodium hydroxide reacts with 100 mL of $0.150 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid, what is the concentration of the sodium hydroxide?
2) In the question above what is the concentration of the aqueous solution produced?
3) What is the concentration of ammonium ions if there is 100 g of ammonium sulfate solid is placed in 100 mL of water?
4) Lead nitrate solution reacts with sodium hydroxide. Using a net ionic equation, how many grams of solid forms if 6.02×10^{23} particles of hydroxide ion are present.

I. Definitions

Acid:

\#1) Arrhenius's definition: substance that ionizes to form \qquad ions. Modified Arrhenius definition: substance that ionizes for form \qquad ions.
\#2) Operational definition: Turns \qquad litmus paper \qquad \& has a pH \qquad

Base(Alkaline):

\#1) Arrhenius's definition: substance that dissociates to form \qquad ions.
\#2) Operational definition: Turns \qquad litmus paper \qquad \& has a pH \qquad

Neutral:

\#1) Arrhenius's definition:
\#2) Operational definition:
Acid solution: A solution where the \qquad concentration is greater than the \qquad concentration
Basic solution: A solution where the \qquad concentration is greater than the \qquad concentration
Indicator: a chemical substance that changes \qquad when an acid or base is added. (Look at pg. 10 in your data books)
pH: \qquad of \qquad (hydronium ion/proton) measured as a negative \qquad
of the \qquad concentration.()
pOH: parts of \qquad measured as a negative \qquad of the \qquad concentration ().

pH meter:

dynamic equalibrium: a balance between forward and reverse process so as to achieve a steady state.
self-ionization of water: when two water molecules react \& break up into ions(dissociation)
\#1) $\mathrm{H}_{2} \mathrm{O}$ <--->
\#2) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}<--->$
NOTE: Fewer than two water molecules in one billion ionize at STP conditions.
NOTE: Only 7 acids completely ionize. See pg $8 \& 9$ in your databook.

Neutralization reaction:

WHMIS symbol:

SAFETY practices:

1. Report all \qquad to a supervisor
2. Wash off acids and bases with \qquad
3. Neutralize an acid with \qquad and a base with
4. Always add \qquad to \qquad
II. Properties of acids and bases

	ACIDS	BASES
Feel		
Touch		
Electrolytic in solution (Y/N)		
State at room temperature		
Neutralization with:		
Concentration of $\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$ions		
Concentration of $\left[\mathrm{OH}^{-}\right]$ions		
Common examples		
Reacts with to produce		
Turns bromothymol blue		
Turns phenolphthalein		
Turns litmus paper		

III. Formula's

1) Ion-product constant for water

* The product of the concentrations of \qquad ions and \qquad ions is \qquad or K_{w}
* Formula:

Calculation example:

1) What is the concentration of the hydroxide ions in a $0.15 \mathrm{~mol} / \mathrm{L}$ solution of hydrochloric acid?
Step 1: Write out a balanced dissociation or ionization equation
Step 2: Determine know concentration
Step 3: Multiply by mole ratio to determine the concentration of hydronium or hydroxide ions.

Step 4: Use the ion concentrations determined in step 3 and plug these values into the ion product formula. Kw [$\mathrm{H} 3 \mathrm{O}+$] $[\mathrm{OH}-]$
2) Calculate the hydrogen concentration in a $0.25 \mathrm{~mol} / \mathrm{L}$ solution of barium hydroxide.
3) Determine the hydronium and hydroxide ion concentrations in 500 mL of water that has 2.6 g of sodium hydroxide dissolved into it.
2) Converting concentration to pH or pOH

* pH calculations use the negative \log
* Formulas: $\mathrm{pH}=-\left(\log \left[\mathrm{H}_{3} \mathrm{O}\right]\right)$

$$
\mathrm{pOH}=-\left(\log \left[\mathrm{OH}^{-}\right]\right)
$$

* Significant digits: Only the number of digits following the decimal in the pH value are significant and used to determine the ion concentrations. The digits before the decimal are NOT significant and are used to determine the exponent. EXAMPLES

1) What is the pH of a $4.7 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$ concentration of hydronium ions?

* Simple Calculators: pH of $4.7 \times 10^{-11} \mathrm{~mol} / \mathrm{L}---->4.7 \mathrm{E} 11-\log$ -
* Programable calculators: ----> -(log 4.7E-11)

2) What is the pOH of \qquad concentration of hydroxide ions?
3) Converting pH or pOH into ion concentrations

* Formulas: $\quad\left[\mathrm{H}_{3} \mathrm{O}\right]=\operatorname{antilog}(-\mathrm{pH})=10^{-\mathrm{pH}}$
$[\mathrm{OH}-]=\operatorname{antilog}(-\mathrm{pOH})=10^{-\mathrm{pOH}}$
EXAMPLES

1) Calculate the hydrogen ion concentration if the pH is 10.33 . (How many sig digs? \qquad)

* Simple calculators: 10.33-Shift log
* Programable calculators: 10^{x}-10.33

2) Calculate the hydroxide ion concentration if the pOH is \qquad
3) Relationship between pH and pOH

Formula: $\quad \mathrm{pH}+\mathrm{pOH}=14.00($ at STP $)$
EXAMPLES

1) What is the pOH in the example 1) above?
2) What is the pH in the example 2) above?

SUMMARY:
pOH
pH
$\left[\mathrm{H}_{3} \mathrm{O}\right]$

[OH]

1.
2.
3.
4.
5. Balanced reaction with \qquad
6. Change the given to moles:

You may first have to find the \qquad using one of the four pH formulas
3. Multiply by the \qquad
4. Convert into
 300 mL of barium hydroxide $\left(\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}\right)$. Determine the concentration of salt formed. 1 .
2. The $[\mathrm{H} 3 \mathrm{O}+]=[\mathrm{HCl}]$

3
4.

TITRATION:

Purpose: : a method used to determine the \qquad of a sample (Acid or Base)

Setup: This will demonstrated in class or a lab done on it only if we have time. It is retaught in Chemistry 30.

1. \qquad the buret and flask; \qquad them with solution
2. A \qquad solution (known concentration) is added to the \qquad and becomes the
3. A \qquad of sample is measured and placed in a \qquad . Several drops of an ideal are added.
4. The titrant is slowly added to the flask until a \qquad change occurs. The \qquad of titrant is measured.
5. The \qquad of sample is calculated using \qquad .
Graph: Sketch the graph for a titration between a strong acid and strong base. The equivalency point is the volume of titrant added to cause a color change or end point. (This is just an introduction.)
