S I THINK I CAN TRULY SAY THAT IN THIS BOOK WE HAVE ALL THE ELEMENTS OF A FIRST-CLASS THRILLER...

Anatomy of a Chemical Equation

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Reactants appear on the left side of the equation.

Anatomy of a Chemical Equation

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Products appear on the right side of the equation.

Anatomy of a Chemical Equation

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

The states of the reactants and products are written in parentheses to the right of each compound.

Anatomy of a Chemical Equation

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

$+$

$\left(\begin{array}{ll}1 & C \\ 4 & H\end{array}\right)$
(4 O)
$\left(\begin{array}{ll}1 & C \\ 2 & \mathrm{O}\end{array}\right)$
$\left(\begin{array}{ll}2 & \mathrm{O} \\ 4 & \mathrm{H}\end{array}\right)$
Coefficients are inserted to
balance the equation.

Subscripts and Coefficients Give Different Information

- Subscripts tell the number of atoms of each element in a molecule

Subscripts and Coefficients Give Different Information

- Subscripts tell the number of atoms of each element in a molecule
- Coefficients tell the number of molecules

Reaction

Types Review

Formation Reactions

- Two or more substances react to form one product
- Examples:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
$\mathrm{C}_{3} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{Br}_{2(1)} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2(1)}$
$2 \mathrm{Mg}_{(s)}+\mathrm{O}_{2(g)} \longrightarrow 2 \mathrm{MgO}_{(\mathrm{s})}$

Decomposition Reactions

- One substance breaks down into two or more substances
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
- Examples:
$\mathrm{CaCO}_{3(\mathrm{~s})} \longrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$2 \mathrm{KClO}_{3(s)} \longrightarrow 2 \mathrm{KCl}_{(s)}+\mathrm{O}_{2(g)}$
$2 \mathrm{NaN}_{3(s)} \longrightarrow 2 \mathrm{Na}_{(s)}+3 \mathrm{~N}_{2(g)}$

Single Replacement

Reactions

$$
\begin{aligned}
& A+B X \rightarrow A X+B \\
& B X+Y \rightarrow B Y+X
\end{aligned}
$$

Examples:
> Metals replaces another metal ion

$$
\mathrm{K}(\mathrm{~s})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{Na}(\mathrm{~s})+\mathrm{KCl}(\mathrm{aq})
$$

- Hydrogen replaces a metal

$$
\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{Na}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq})
$$

> Hydrogen in an acid replaced by a metal

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{MgCl}_{2}(\mathrm{aq})
$$

- Halogens replace halogens

$$
-\mathrm{F}_{2}(\mathrm{~g})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{NaF}(\mathrm{aq})
$$

Double Replacement Reactions

The ions of two compounds exchange places in an aqueous solution to form two new compounds.

$$
A X+B Y \rightarrow A Y+B X
$$

One of the compounds formed is usually a:
-Precipitate
$\mathbf{P b}\left(\mathbf{N O}_{\mathbf{3}}\right)_{\mathbf{2}}(\mathrm{aq})+\mathbf{2 N a I}(\mathrm{aq}) \rightarrow \mathbf{2} \mathbf{N a N O}_{\mathbf{3}}(\mathbf{(a q})+\mathbf{P b I}_{\mathbf{2}}(\mathrm{s})$
-an insoluble gas that bubbles out of solution
-a molecular compound, usually water. $\mathbf{H C l}(\mathbf{a q})+\mathrm{NaOH}(\mathbf{a q}) \rightarrow \mathbf{N a C l}(\mathbf{a q})+\mathrm{H}_{2} \mathbf{O}(1)$

Combustion Reactions

- Rapid reactions that produce a flame
- Most often involve hydrocarbons reacting with oxygen in the air
- Examples:
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$\mathrm{C}_{3} \mathrm{H}_{8(g)}+5 \mathrm{O}_{2(g)} \longrightarrow 3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(g)}$

Review of Moles

Avogadro's Number

Laboratory-size sample

- 6.02×10^{23} particles/mol
- (also atoms/mol; molecules/mol; formula units/mol

Molar Mass

- By definition, the average mass of 1 mol of a substance (i.e., g/mol)
- The molar mass of an element is the atomic mass for the element that we find on the periodic table, usually to two decimal places. le) $\mathrm{Na}=22.99 \mathrm{~g} / \mathrm{mol}$
- The molar mass of a compound is the atomic masses of all the elements added together. le) $\mathrm{C}_{2} \mathrm{H}_{6} \quad \mathrm{C}: 2 \times 12.01=24.02$ $+\mathrm{H}: \quad 6 \times 1.01=6.06$

Using Moles

Moles provide a bridge for all conversions

Mole Relationships

Name of substance	Formula	Formula Weight (amu)	Molar Mass (g/mol)	Number and Kind of Particles in One Mole
Atomic nitrogen	N	14.0	14.0	$6.022 \times 10^{23} \mathrm{~N}$ atoms
Molecular nitrogen	N_{2}	28.0	28.0	$\left\{\begin{array}{c} 6.022 \times 10^{23} \mathrm{~N}_{2} \text { molecules } \\ 2\left(6.022 \times 10^{23}\right) \mathrm{N} \text { atoms } \end{array}\right.$
Silver	Ag	107.9	107.9	$6.022 \times 10^{23} \mathrm{Ag}$ atoms
Silver ions	Ag^{+}	$107.9^{\text {a }}$	107.9	$6.022 \times 10^{23} \mathrm{Ag}^{+}$ions
Barium chloride	BaCl_{2}	208.2	208.2	$\left\{\begin{aligned} & 6.022 \times 10^{23} \mathrm{BaCl}_{2} \text { units } \\ & 6.022 \times 10^{23} \mathrm{Ba}^{2+} \text { ions } \\ & 2\left(6.022 \times 10^{23}\right) \mathrm{Cl}^{-} \text {ions } \end{aligned}\right.$

${ }^{a}$ Recall that the electron has negligible mass; thus, ions and atoms have essentially the same mass.

- One mole of atoms, ions, or molecules contains Avogadro's number of those particles
- One mole of molecules or formula units contains Avogadro's number times the number of atoms or ions of each element in the compound

Mole relationships

- Mole to mass relationship

$$
\mathrm{n}=\mathrm{m} / \mathrm{M} \quad \mathrm{~mol}=\mathrm{g} /(\mathrm{mol} / \mathrm{g})
$$

- Mole to particles relationship

$$
\left.\mathrm{n}=\mathrm{p} / \mathrm{P} \text { mol=parts/(6.02E }{ }^{23} \text { part } / \mathrm{mol}\right)
$$

- Mole to volume relationship for gases at STP \& SATP

$$
\begin{aligned}
\mathrm{n} & =\mathrm{v} / \mathrm{V}_{\mathrm{STP}(22.4 \mathrm{~L} / \mathrm{mol})} \mathrm{n}=\mathrm{v} / \mathrm{V}_{\mathrm{SATP}(24.8 \mathrm{~L} / \text { moll }} \mathrm{m} \\
\mathrm{~mol} & =\mathrm{L} / 22.4 \mathrm{~L} / \mathrm{mol} ; \mathrm{mol}=\mathrm{L} / 24.8 \mathrm{~L} / \mathrm{mol}
\end{aligned}
$$

Stoichiometry

Stoichiometry Definition

- STOICHIOMETRY: the use of proportions(mole ratio's) to calculate quantities of substances in balanced chemical equations.
- MOLE RATIO: comparison or division of two coefficients in a balanced chemical equation. (REQUIRED/GIVEN or R/G.)

Example of Mole Ratios

- $\mathrm{N}_{2(\mathrm{~g})} \quad+\quad 3 \mathrm{H}_{2(\mathrm{~g})} \quad--->2 \mathrm{NH}_{3(\mathrm{~g})}$
- The mole ratio between $\mathrm{H}_{2(\mathrm{~g})} \& \mathrm{NH}_{3(\mathrm{~g})}$ is

3 mol of H_{2}
2 mol of $\mathrm{NH}_{3(\mathrm{~g})}$

- The mole ratio between $\mathrm{NH}_{3} \& \mathrm{~N}_{2}$ is 2 mol of NH_{3}
1 mol of N_{2}

Types of Stoichiometry

1. Gravimetric Stoichiometry: dealing with molar mass, mass \& mole quantities. $\mathrm{n}=\mathrm{m} / \mathrm{M}$; $\mathrm{n}=\mathrm{p} / \mathrm{P}$
2. Solution Stoichiometry: dealing with molar concentration, volume \& mole quantities. $\mathrm{n}=\mathrm{CV}$
3. Gas Stoichiometry: dealing with molar volume, Ideal Gas Law \& mole quantities $\mathrm{n}=\mathrm{v} / \mathrm{V}$

Stoichiometric Calculations

Equation:	$2 \mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g})$	\longrightarrow	$2 \mathrm{H}_{2} \mathrm{O}$ (l)
Molecules:	2 molecules H_{2}	$+$	1 molecule O_{2}	\longrightarrow	2 molecules $\mathrm{H}_{2} \mathrm{O}$
			(3)		
Mass (amu):	$4.0 \mathrm{amu} \mathrm{H}_{2}$	+	$32.0 \mathrm{amu} \mathrm{O}{ }_{2}$	\rightarrow	$36.0 \mathrm{amu} \mathrm{H}_{2} \mathrm{O}$
Amount (mol):	2 mol H 2	$+$	1 mol O 2	\longrightarrow	2 mol H 2 O
Mass (g):	$4.0 \mathrm{~g} \mathrm{H}_{2}$	$+$	$32.0 \mathrm{~g} \mathrm{O}_{2}$	\rightarrow	$36.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

The coefficients in the balanced equation give the ratio of moles of reactants and products

Solving a Stoichiometry Problem

1. Balance the reaction. ID the GIVEN (G) \& REQUIRED (R) Coefficients in the reaction.
2. Convert GIVEN masses to moles by dividing by the Molar mass. (volumes divide by Molar volumes; particles divide by Avogadro's number)
3. Multiply the moles of GIVEN by the coefficient mole ratios (R / G) to find moles of REQUIRED. (If 2 givens are present you will learn to determine which is limiting)
4. Convert the REQUIRED moles to grams/litres/ particles by multiplying by the Molar mass/Molar Volume or Avogadro number).
5. Determine the $\%$ error $\& \%$ yield (will discuss later)

Stoichiometric Calculations

From the mass of
Substance A you can use the ratio of the coefficients of A and
B to calculate the mass of Substance B formed (if it's a product) or used (if it's a reactant)

Given:

Use
molar mass
of A

Find:
Grams of substance B

Mole to Mole Stoichiometry

Ex 1) Nitrogen reacts with hydrogen to form a gas. Find the number of moles of nitrogen required if 6.0 mol of ammonia are formed?

R

Step 1) $1 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
Step 2) NO CONVERSION $\rightarrow 6.0 \mathrm{~mol}$
Step 3) 6.0 mol of $\mathrm{NH}_{3} \times 1 \mathrm{~mol}$ of $\mathrm{N}_{2}=3.0 \mathrm{~mol}$ of N_{2}

$$
2 \mathrm{~mol} \text { of } \mathrm{NH}_{3}
$$

Step 4) NO CONVERSION; 3.0 mol of N_{2} is the final answer (2 significant digits)

Mole to Mole Stoichiometry

Ex 2) Find the moles of hydrogen if 0.600 mol of ammonia are produced?

R

G
Step 1) $1 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
Step 2) NO CONVERSION; 0.600 mol of NH_{3}
Step 3) 0.600 mol of $\mathrm{NH}_{3} \times 3 \mathrm{~mol}$ of $\mathrm{H}_{2}=0.900 \mathrm{~mol}$ of H_{2} 2 mol of NH_{3}
Step 4) NO CONVERSION; 0.900 mol of H_{2} is the final answer (3 significant digits)

Mole to Mole Stoichiometry

Ex 3) Find the moles of water produced if 6.32 mol of hydrogen are used?

G

 RStep 1) $2 \mathrm{H}_{2(\mathrm{~g})}+1 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Step 2) NO CONVERSION $\rightarrow 6.32 \mathrm{~mol}$
Step 3) 6.32 mol of $\mathrm{H}_{2} \times 2 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}=6.32 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}$ 2 mol of H_{2}
Step 4) NO CONVERSION: 6.32 mol of $\mathrm{H}_{2} \mathrm{O}$ is the final answer

B) Mole to Quantity Stoichiometry

Ex 1) 5.00 mol of nitrogen reacts with excess hydrogen. How many litres of ammonia are produced at SATP?
G
R

Step 1) $1 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
Step 2) NO CONVERSION $\rightarrow 5.00 \mathrm{~mol}$
Step 3) 5.00 mol of $\mathrm{N}_{2} \times 2 \mathrm{~mol}$ of $\mathrm{NH}_{3}=10.0 \mathrm{~mol}$ of NH_{3} 1 mol of N_{2}
Step 4) $v=n V=10.0 \mathrm{~mol} x 24.8 \mathrm{~L} / \mathrm{mol}$ $=248 \mathrm{~L}$ of HN_{3} (3 significant digits)

B) Mole to Quantity Stoichiometry

 Ex 2) Aluminum reacts with calcium nitrate. If 0.900 mol of calcium forms, find the mass of aluminum required?R

> G

1) $2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \rightarrow 3 \mathrm{Ca}_{(\mathrm{s})}+2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3(\mathrm{aq})}$
2) No Conversion
3) 0.900 mol of $\mathrm{Ca} \times \underline{2 \mathrm{~mol} \text { of } \mathrm{Al}=0.600 \mathrm{~mol} \text { of } \mathrm{Al}, ~}$ 3 mol of Ca
4) $\mathrm{m}=\mathrm{nM}=0.600 \mathrm{~mol} \times 26.98 \mathrm{~g} / \mathrm{mol}=16.188_{\text {ofogetry }}$ $\mathrm{m}=16.2 \mathrm{~g}$ of Al (3 significant digits)

Mole to Quantity Stoichiometry

Ex 3) 1.20 mol of Cu react with silver nitrate. How many particles of precipitate are produced?

$$
\begin{aligned}
& \text { G } \\
& \text { R } \\
& \text { 1) } 1 \mathrm{Cu}_{(\mathrm{s})}+2 \mathrm{AgNO}_{3(\mathrm{aq})} \rightarrow \mathbf{2} \mathrm{Ag}_{(\mathrm{s})}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \\
& \text { 2) No conversion; } 1.20 \mathrm{~mol} \\
& \text { 3) } 1.20 \mathrm{~mol} \text { of } \mathrm{Cu} \times \underline{\mathbf{2 ~ m o l ~ o f ~} \mathbf{~ A g}}=\mathbf{2 . 4 0} \mathbf{~ m o l ~ o f ~} \mathrm{Ag} \\
& 1 \mathrm{~mol} \text { of } \mathrm{Cu} \\
& \text { 4) } \mathrm{p}=\mathrm{nP}=2.40 \mathrm{~mol} \text { of } \mathrm{Ag} \times 6.02 \mathrm{E} 23=1.448 . . \mathrm{E} 24 \\
& 1.45 \times 10{ }^{24} \text { particles of } \mathrm{Ag}
\end{aligned}
$$

C) Quantity to Mole Stoichiometry

Ex 1) 4.00 L of nitrogen reacts with excess hydrogen to form ammonia. How many moles of ammonia are produced at STP?

G
R

1) $1 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
2) $\mathrm{n}=\mathrm{v} / \mathrm{V}=4.00 \mathrm{~L} / 22.4 \mathrm{~L} / \mathrm{mol}$ of $\mathrm{N}_{2}=0.17857 \ldots$ mol of N_{2}
3) $0.17857 \ldots \mathrm{~mol}$ of $\mathrm{N}_{2} \times 2 \mathrm{~mol}$ of $\mathrm{NH}_{3} / 1 \mathrm{~mol}$ of N_{2} $=0.35714 \ldots \mathrm{~mol}$ of $\mathrm{NH}_{3(\mathrm{~g})}$
4) No Conversion; 0.357 mol of $\mathrm{NH}_{3(\mathrm{~g})}(3 \mathrm{sig} \text { digs })^{\text {vidinionemy }}$

Quantity to Mole Stoichiometry

Ex 2) Iron reacts with oxygen. Find the number of moles of oxygen if 4.0×10^{23} formula units (ionic compound) are produced at SATP.

R G

1) $4 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
2) $n=p / P=4.0 E 23$ formunits $/ 6.02 \mathrm{E} 23$ formunits $/ \mathrm{mol}$ $\mathrm{n}=0.6644 \cdots \mathrm{~mol}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
3) $0.6644 \cdots \mathrm{~mol} \mathrm{Fe} \mathrm{O}_{3(\mathrm{~s})} \times 3 \mathrm{~mol} \mathrm{O}_{2}=0.9966 \mathrm{~mol} \mathrm{O}$ $2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
4) No Conversion; 1.0 mol of O_{2}

Quantity to Mole Stoichiometry

Ex 3) 27 g of Sucrose burns. Find the number of moles of water that is produced.

G

1) $1 \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 12 \mathrm{CO}_{2(\mathrm{~g})}+11 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
2) $\mathrm{n}=\mathrm{m} / \mathrm{M}=27 \mathrm{~g} / 342.30 \mathrm{~g} / \mathrm{mol}=0.07887 . . \mathrm{mol}$
3) $0.07887 . . \mathrm{mol}$ sucrose $\times 11 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=0.8676 . . \mathrm{molH}_{2} \mathrm{O}$ 1 mol sucrose
4) No conversion; 0.87 mol of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}(2$ sig digs $)$

D) Quantity to Quantity Stoichiometry

 Ex 1) Calculate the volume of NH_{3} produced at STP when 5.40 g of hydrogen reacts with nitrogen.$$
G \quad \mathrm{R}
$$

1) $1 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
2) $\mathrm{n}=\mathrm{m} / \mathrm{M}=5.40 \mathrm{~g} / 2.02 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{H}_{2}=2.67326 \ldots$ mol of H_{2}
3)2.67326... mol of $\mathrm{H}_{2} \times \underline{2} \mathrm{~mol}$ of $\mathrm{NH}_{3}=1.7821 \ldots \mathrm{molNH}_{3}$ 3 mol of H_{2}
3) $\mathrm{v}=\mathrm{nV}=1.7821 \mathrm{~mol} \times 22.4 \mathrm{~L} / \mathrm{mol}=39.92 \ldots \mathrm{~L}$ $39.9 \mathrm{~L}^{2} \mathrm{NH}_{3(\mathrm{~g})}$

D) Quantity to Quantity Stoichiometry

 Ex 2) Find the molecules of hydrogen produced if 24.0 L of water decomposes at SATP conditions. R1) $\quad 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+1 \mathrm{O}_{2(\mathrm{~g})}$
2) $\mathrm{n}=\mathrm{v} / \mathrm{V}=24.0 \mathrm{~L} / 24.8 \mathrm{~L} / \mathrm{mol}=0.9677 . . \mathrm{mol} \mathrm{H} 2 \mathrm{O}$
3) $0.9677 . . \mathrm{mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \times 2 \mathrm{~mol} \mathrm{H}_{2}=0.9677$.. $\mathrm{mol} \mathrm{H}_{2}$ $2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$
4) $\mathrm{p}=\mathrm{nP}=0.9677$..mol $\mathrm{H}_{2} \times 6.02 \mathrm{E} 23 \mathrm{molecules} / \mathrm{mol}$ $=5.825$. E 23 molecules of H_{2}
$=5.83 \mathrm{E} 23$ molecules of H_{2}

Limiting Reactants

How Many Cookies Can I Make?

- You can make cookies until you run out of one of the ingredients
- Once this family runs out of sugar, they will stop making cookies (at least any cookies you would want to eat)

How Many Cookies Can I Make?

- In this example the sugar would be the limiting reactant, because it will limit the amount of cookies you can make

Limiting Reactants

The limiting reactant is the reactant present in the smallest stoichiometric amount

Limiting Reactants

- The limiting reactant is the reactant present in the smallest stoichiometric amount
- In other words, it's the reactant you' Il run out of first (in this case, the H_{2})

Stoichiometry

Limiting Reactants

In the example below, the O_{2} would be the excess reagent

Stoichiometry

Limiting Reagents

- Definition: and reactant that is all used up and determines the amount of product in a chemical reaction.
- Excess reagent: the reactant that is not all used up.
- Why worry about limiting reagents?
- Because they determine the amount of product that is formed in the reaction.

Solving Limiting Reagent Stoich Problems

1. Balance the reaction. ID the GIVENs (G) \& REQUIRED (R) Coefficients in the reaction.
2. Convert GIVEN masses to moles by multiplying by the Molar mass.
3. Multiply the moles of GIVENs by the coefficient mole ratios $(\mathrm{r} / \mathrm{g})$ to find moles of REQUIRED. (Do it 2 x) Determine which GIVEN is the LIMITING reagent by seeing which GIVEN in step 3 produces the smallest required product. Use this required product in step 4
4. Convert from the REQUIRED moles to grams by multiplying by the Molar mass.
5. \%yield \& \% error

Limiting Reagents

Ex 1) If $\mathbf{2 . 0} \mathbf{~ m o l l ~ o f ~ n i t r o g e n ~ w a s ~ r e a c t e d ~ w i t h ~}$
5.0 mol of hydrogen, what would the excess and limiting reagents be?

G1 G2 R

1) $3 \mathrm{H}_{2(\mathrm{~g})}+\mathbb{1} \mathrm{N}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
2) No Conversion
3) G1: $5.0 \mathrm{~mol} \mathrm{H}_{2} \times 2 \mathrm{~mol} \mathrm{NH}_{3}=3.3 \mathrm{~mol} \mathrm{NH}_{3}$ 3 mol of $\mathrm{H}_{2} \quad$ (limiting)
G2: $2.0 \mathrm{~mol} \mathbb{N}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathbb{N}_{2}}=\underset{\text { (excess) }}{4.0 \mathrm{~mol} \mathrm{NH}_{3}}$

Limiting Reagents

Ex 2) There is 6.70 mol of $\mathrm{Na} \& 3.20 \mathrm{~mol}$ of Cl_{2}.What are the limiting and the excess reagents?

G1 G2
R
1)
$2 \mathrm{Na}+1 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{s})}$
2) No Conversion

1) G1: $6.70 \mathrm{~mol} \mathrm{Na} \times \underline{2 \mathrm{~mol} \mathrm{NaCl}}=6.70 \mathrm{~mol} \mathrm{NaCl}$

$$
2 \mathrm{~mol} \text { of } \mathrm{Na}
$$

G2: $3.20 \mathrm{~mol} \mathrm{Cl}_{2} \times \underline{2 \mathrm{~mol} \mathrm{NaCl}}=6.20 \mathrm{~mol} \mathrm{NH}_{3}$ 1 mol Cl 2 (llimilting)

Limiting Reagents

Ex 3) How many moles of carbon dioxide are produced when 2.70 mol of ethane reacts with 6.30 mol of oxygen?

G1 G2 R

1) $1 \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+3.5 \mathrm{O}_{2(\mathrm{~g})}-2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
2) No Conversion
3) G1: $2.70 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \times 2 \mathrm{~mol} \mathrm{CO}_{2}=5.40 \mathrm{~mol} \mathrm{CO} 2$ 1 mol of $\mathrm{H}_{2} \quad$ (excess)
G2: $6.30 \mathrm{~mol} \mathrm{O}_{2} \times 2 \mathrm{~mol} \mathrm{CO}_{2}=3.60 \mathrm{~mol} \mathrm{CO}_{2}$ $3.5 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$
(limiting)
4) No Conversion; the limiting is used $\rightarrow 3.60 \mathrm{~mol}$

Limiting Reagents

Ex 4) Iron (III) oxide reacts with carbon monoxide to produce iron and carbon dioxide. a)If 84.80 g of iron (III) oxide reacted with 31.5 L of carbon monoxide at STP, how many litres of carbon dioxide would be produced?

1) $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~g})}$
2) $84.80 / 159.6931 .5$ ㄴ/ $22.4 \mathrm{~L} / \mathrm{mol}$ $\mathrm{n}=0.531 . . \mathrm{mol} \mathrm{n}=1.406 . \mathrm{mol}$
3) $\times 3 \mathrm{~mol} / 1 \mathrm{~mol} \times 3 \mathrm{~mol} / 3 \mathrm{~mol}$
$=1.593 . . \mathrm{mol}$ 1.406..mol of CO2
Excess Limiting
4) $\mathrm{V} \equiv \mathrm{n} \mathrm{V}=1.406 . \mathrm{mol} \times 22.4 \mathrm{~L} / \mathrm{mol}=31.5 \mathrm{~L}$ of $\mathrm{CO} 2^{\text {hiomery }}$

Limiting Reagents

Ex 4) CHALLENGE: How many moles of excess reagent would remain? How many grams?

R
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+$

G
$3 \mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~g})}$ 31.5L/ $22.4 \mathrm{~L} / \mathrm{mol}$

Percent Yield

- Definition: The ratio of the actual yield to the theoretical yield for a chemical reaction expressed as a percentage.
- Theoretical Yield (ideal): The maximum amount of product that could be formed from a given amount of reactant. This is solved using stoichiometry (required value).
- Actual Yield (experimental): The amount of product that forms when a reaction is carried out in a laboratory.

Theoretical yield vs. Actual yield
Suppose the theoretical yield for an experiment was calculated to be 19.5 grams, and the experiment was performed, but only 12.3 grams of product were recovered. Determine the \% yield.

Theoretical yield $=19.5 \mathrm{~g}$ based on limiting reactant Actual yield $=12.3 \mathrm{~g}$ experimentally recovered

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100
$$

$$
\% \text { yield }=\frac{12.3}{19.5} \times 100=63.1 \% \text { yield }
$$

Percent Yield

What is the $\%$ yield if $\mathbf{2 4 . 8} \mathbf{g}$ of $\mathbf{C a C O} \mathbf{C O}_{\mathbf{3}}$ is heated to produce $\mathbf{1 3 . 1} \mathbf{g}$ (TY) of $\mathbf{C a O}$?
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$

Percent Error

- Definition: A calculation that indicated the amount of error made in the laboratory
- Why is it not 0% ?
- Instrumental errors
- Precision of instruments
- Experimental errors
- Conditions of room, contaminates in air
- Reaction doesn't go to completion
- Excess reagent becomes part of the product
- Human errors
- These should and can be avoided
- Precipitate going through filter paper
- "I didn't measure the right mass"

Percent Error

- Formula: actual-theoretical| $\times 100$ theoretical
The lines represent absolute value answer is always positive. NOTE: Please do the subtraction first; then divide by theoretical.

Percent Error

Iron (II) oxide reacts with carbon monoxide to form iron and carbon dioxide. There is 49.3 g of iron produced when 84.8 g of iron oxide reacts with 12.0 g of carbon monoxide. What is the $\%$ yield \& \% error?

