## Chemistry 20: Gases

## A. Properties of Gases

Chemical Properties (reactivity)

1. Halogen gases : $\qquad$
2. Nobel gases : $\qquad$
3. Other gases : $\qquad$
Physical Properties
4. Gases do not have a fixed $\qquad$ or $\qquad$ . Gases fill their containers.
5. Gases are highly $\qquad$
6. Gases $\qquad$
7. Three variables affect gases :
a. Pressure: $\qquad$ measured by a $\qquad$
The SI unit for pressure is $\qquad$ Sea level is $\qquad$ $=$ $\qquad$ atm $=$ $\qquad$
b. Volume: $\qquad$ measured by a $\qquad$
The SI unit for volume is $\qquad$
c. Temperature: $\qquad$ measured by a $\qquad$
The SI unit for temperature is $\qquad$
B. Behavior of Gases
8. Effect of Adding or Removing Gas (Changing $\qquad$ )
ADDING GAS: * increases the

* increases the number of $\qquad$ \& $\qquad$
* if you double the amount of gas,
* example:

REMOVING GAS: * decreases the $\qquad$

* remove half the gas,

2. Effect of Changing the size of the container (Changing $\qquad$ SMALLER CONTAINER: * decreases the $\qquad$ )

* increases the $\qquad$ \& $\qquad$
* a container that compressed to half its size will $\qquad$ LARGER CONTAINER:
* increases the $\qquad$ \& decreases the $\qquad$ \& $\qquad$
* a container that is doubled in size will $\qquad$

3. Effect of Heating or Cooling the Gas (Changing $\qquad$ HEATING: * increases the $\qquad$

* increases the number of $\qquad$ \&
* Double the amount of heat will $\qquad$ COOLING:
* decreases the $\qquad$ \& $\qquad$
$\qquad$


## C. Dalton's Law of Partial Pressure

 Introduction:* most gases are

| Air at Sea Level | percent | mmHg | atmospheres |
| :---: | :---: | :---: | :---: |
| Nitrogen | 78\% | 593.4 | 0.781 |
| Oxygen | 21\% | 159.2 | 0.209 |
| Carbon dioxide | 0.04\% | 0.3 | 0.001 |
| Others | 0.96\% | 7.1 | 0.009 |
| TOTAL | 100\% | 760.0 | 1.000 |

* molecules of gases at the same temperature will have $\qquad$ kinetic energy
* pressure depends on the $\qquad$ of particles, not the $\qquad$ of particles
* if you increase your altitude then the pressure of the air $\qquad$
* each gas exerts its own $\qquad$ -
Dalton's Law: At constant $\qquad$ \& $\qquad$ , the total $\qquad$ exerted by a mixture of gases is equal to the sum of the partial $\qquad$ .


## Formula:

Example:

1. Determine the pressure of a gas mixture if the pressure of the oxygen is 150 mmHg , the nitrogen is 350 mmHg and the helium is 200 mmHg .
2. What is the pressure of oxygen in a gas mixture if the total pressure is 2.5 atm and the pressure of hydrogen is 1.7 atm ?
3. Why do planes have to pressurize the cabin?

## D. Boyle's Law of Pressure-Volume Changes

## Introduction:

* STP:
* SATP:
* $1 \mathrm{kPa}=$ $\qquad$
* Gas Laws are important for a Scuba Diver.
- When a person dives into water, the deeper they go the $\qquad$ the
pressure. The scuba equipment provides air to the lungs at a pressure that matches the pressure of the water.
- If a diver ascends to the surface without exhaling steadily, the air in the lungs will
$\qquad$ as the pressure drops and the lungs will $\qquad$ .
- gases under pressure are $\qquad$ so the length \& depth of dive are important
- If the diver ascends to quickly, he can get the $\qquad$ . What happens is
the gases are less soluble when the pressure drops and the gases form $\qquad$ .
* Robert Boyle's (1627-1691) 1662 experiment:

Problem: What is the mathematical relationship between the pressure \& volume of a gas?
DESIGN: Pressure is exerted on a gas and the change in volume is measured.

Manipulated variable:
Data: $\quad$ Pressure (kPa) Volume (L) $100 \quad 5.00$
$110 \quad 4.55$
120
130
4.16
3.85

## Analysis:

Responding variable:
Graph:
Vol (L)

Boyle's Law: $\qquad$

## Formula:

Comparing two sets of measurements on the same gas: $\qquad$

## Example:

1. The pressure on 2.50 L of anesthetic gas is changed from 760 mmHg to 304 mmHg . What will the new volume be, if the temperature remains constant?
2. A balloon is filled with 30.0 L of helium at 1 atm . What is the volume when the balloon rises to an altitude where the pressure is 0.250 atm .
E. Charles' Law for Temperature-Volume Changes Introduction:

* Absolute zero: $\qquad$
* Kelvin temperature: 100 C $\qquad$
25 C $\qquad$ K 0 C $\qquad$ K
-273.14 C $\qquad$ K (Absolute zero - never attained) *Jacques Charles'(1746-1823) 1787 experiment:
Problem: What is the mathematical relationship between the temperature \& volume of a gas?
DESIGN: Temperature is varied and the change in volume of the gas is measured.

Manipulated variable:
Data: Temperature (C)Volume (L)

| $25($ | K $)$ | 5.00 |
| :--- | :--- | :--- |
| $50($ | $\mathrm{K})$ | 5.42 |
| $75($ | $\mathrm{K})$ | 5.84 |
| $100($ | $\mathrm{K})$ | 5.26 |

Analysis:

RESPONDING VARIABLE:
GRAPH:

$$
1
$$

## Charles'Law:

$\qquad$

## Formula:

Comparing two sets of measurements on the same gas: $\qquad$

## Example:

1) A balloon is inflated in an air-conditioned room at 27 C , and has a volume of 4.0 L . If it is heated to 57 C , what is the new volume of the balloon if the pressure is constant. (Must use Kelvin.)
2) If a sample of gas occupies 6.9 L at 327 C , what temperature is required to reduce the gas to 3.4 L ? (Convert 327 to K and then convert answer back to C .)

## F. Gay-Lussac's Law for Temperature-Pressure Changes

## Introduction:

* On a hot summer day the pressure in a car tire increases. Why?
* In 1802 Joseph Gay-Lussac (1778-1850) explained this relationship

Gay Lussac's Law:

## Formula:

Comparing two sets of measurements on the same gas: $\qquad$ Graph:

## Example:

1) A gas in an aerosol can at a pressure of 1 atm at 27 C . The can is thrown in the fire. What is the pressure if the temperature reaches 927 C ?
2) A gas has a pressure of 50.0 mmHg at 540 K . What is the temperature when the pressure is 18.5 mmHg ?
G. Combined Gas Law

## Introduction:

* Boyle's, Charles' and Gay-Lussac's laws can be combined

Combined Gas Law:

## Formula:

Comparing two sets of measurements on the same gas: $\qquad$ Example:

1) A balloon containing hydrogen gas at 20 C and a pressure of 100 kPa has a volume of 7.50 L . Calculate the volume of the balloon after it rises 10 km where the temperature is -36 C and the pressure is 28 kPa . (Assume that no hydrogen gas escapes.
2) A cylinder of compressed oxygen has a volume of 30 L and a pressure of 100 atm at 27 C . The cylinder is cooled until the pressure is 5.0 atm . What is the new temperature in C ?
G. Ideal Gas Law

Introduction:

* Ideal gas: a hypothetical gas that $\qquad$ all the gas laws $\qquad$ under $\qquad$
- does not condense into a $\qquad$ when cooled
- graphs have $\qquad$ lines
- composed of particles of $\qquad$ size that do not $\qquad$
- real gases deviate from ideal gases at $\qquad$ temperatures \& $\qquad$ pressure
* One can calculate the moles of a gas at $\qquad$ . $(\mathrm{n}=\mathrm{v} / \mathrm{V}$ where V is $22.4 \mathrm{~L} / \mathrm{mol})$
- The molar volume of an ideal gas is $22.414 \mathrm{~L} / \mathrm{mol}$. The molar volume of helium is $22.426 \mathrm{~L} / \mathrm{mol}$. The molar volume of chlorine gas is $22.063 \mathrm{~L} / \mathrm{mol}$
- Therefore the $\qquad$ the particle the closer the gas resembles an ideal gas
* Avogadro stated that equal volumes of gases at the same $\qquad$ and $\qquad$ contain equal numbers of molecules (moles)


## * Summary

- Boyle: volume of a gas is inversely proportional to pressure
-Charles: volume of a gas in directly proportional to Kelvin temperature
- Avogadro: volume of a gas is directly proportional to the number of moles
- COMBINATION: v n T 1/P
- Ideal gas law constant $(\mathrm{R})$ : At STP $\mathrm{R}=\mathrm{Pv} / \mathrm{nT}=(101.3 \mathrm{kPa} \times 22.4 \mathrm{~L}) /(1 \mathrm{~mol} \times 273 \mathrm{~K})$
$\qquad$
$\qquad$ $\mathrm{L} \times \mathrm{mmHg}$ or $\qquad$ Lxatm
$\mathrm{K} x \mathrm{~mol} \quad \mathrm{~K} x \mathrm{~mol} \quad \mathrm{~K} \times \mathrm{mol}$

Ideal Gas Law: the product of the pressure and volume is directly proportional to the amount and absolute temperature of the gas.

## Formula:

Example: 1) What mass of neon should be introduced into an evacuated 0.88L tube to produce a pressure of 90 kPa at 30 C ?
2) A cylinder containing 20.0 L of nitrogen gas is pressurized to 200 atm at 27 C . How many moles of nitrogen gas are present?
3) A cylinder contains $2.24 \times 106 \mathrm{~L}$ of methane gas at a pressure of 15.0 atm and a temperature of 42 C . How many grams of methane are in the container?
H. Gas Stoichiometry

Steps of Stoichiometry
1.

2a.
2b.
3.
4.
5.
6.

## Example:

In an industrial application known as the Harber process ammonia to be used as fertilizer results from the reaction of nitrogen and hydrogen. What is the percent yield of ammonia, if 12 kL is produced at 450 kPa pressure and $80^{\circ} \mathrm{C}$ from the reaction of 7.5 kg of hydrogen with $7.0 \times 10^{26}$ particles of nitrogen?

