CHEMISTRY 20: GASES

Properties of Gases A. **Chemical Properties** (reactivity) 1. Halogen gases : _____ 2. Nobel gases: 3. Other gases: Physical Properties Gases do not have a fixed _____ or ____. Gases fill their containers. 1. 2. Gases are highly _____ Gases ____ 3. Three variables affect gases: 4. Pressure: _____ measured by a _____ The SI unit for pressure is _____ Sea level is _____ = ____atm = ____ Volume: _____ measured by a _____ b. The SI unit for volume is _____ Temperature: _____ measured by a _____ The SI unit for temperature is _____ c. B. **Behavior of Gases** Effect of Adding or Removing Gas (Changing _____) * if you double the amount of gas, _____ * example: REMOVING GAS: * decreases the _____ * remove half the gas, _____ Effect of Changing the size of the container (Changing _____) 2. SMALLER CONTAINER: * decreases the _____ * increases the _____ & ____ * a container that compressed to half its size will LARGER CONTAINER: * increases the _____ & decreases the ____ & ____ * a container that is doubled in size will College the Cas (Changing) Effect of Heating or Cooling the Gas (Changing 3. HEATING: * increases the ______ & _____ * Double the amount of heat will COOLING: * decreases the _____, ___ & _____ * Decrease the heat by half will _____

Introductio					
* mc	ost gases are				
	Air at Sea Level		<u>mmHg</u>	_	<u>eres</u>
	Nitrogen	78%	593.4	0.7 81	
	Oxygen	21%	159.2	0.209	
	Carbon dioxide	0.04%	0.3	0.001	
	Others	<u>0.96%</u>	<u>7.1</u>	0.009	
	TOTAL	100%	760.0	1.000	
* mc	olecules of gases at the sar	me temperati	ure will have	;	kinetic energy
	essure depends on the				
* if v	ou increase your altitude	then the pre	ssure of the	air	
* eac	ch gas exerts its own	•			
alton's L	ch gas exerts its own <u>aw</u> : At constant	&	the ,	total	exerted
by a	mixture of gases is equal	to the sum o	of the partial		<u>.</u>
Formula:					
Formula:	Determine the pressure	of a gas mix	ture if the pr	essure of the	e oxygen is 150
Formula: Example:	-	_	-		
Formula: Example:	Determine the pressure mmHg, the nitrogen is 3	_	-		
ormula: xample:	-	_	-		
Formula: Example:	-	_	-		
Formula: Example:	-	_	-		
ormula: xample:	-	_	-		
Formula: Example:	-	350 mmHg a	and the helium	m is 200 mm	nHg.

Why do planes have to pressurize the cabin?

3.

	<u>/le's Law of Pressu</u> /oduction:	<u>re-volume Cnan</u>	<u>ges</u>	
	* SATP:			
	* 1kPa =			
	* Gas Laws are in	mportant for a Scu	ıba Diver.	
	- When a person	dives into water, t	he deeper they g	go the the
				lungs at a pressure that matches
	the pressure of th	e water.		
	- If a diver ascend	ds to the surface w	ithout exhaling	steadily, the air in the lungs wil
		pressure drops an		
	- gases under pres	ssure are	so the length	th & depth of dive are important
	- If the diver asce	nds to quickly, he	can get the	What happens is
				and the gases form
	_	(1627-1691) 1662	-	
				pressure & volume of a gas?
<u>DESIGN</u> : F	Pressure is exerted or	_	•	
	MANIPULATED V			ONDING VARIABLE:
ATA:	Pressure (kPa)	` '	GRAPH:	
	100		(-)	
	110	4.55	Vol (L)	
	120			
	130	3.85		
NALYSIS	<u>:</u>			
			'	Pressure (kPa)
Boy	<u>le's Law:</u>			
	mula:			
Cor	nparing two sets of	measurements on	the same gas: $_$	
Exa	<u>imple</u> :			
	1. The pressu	re on 2.50 L of an	esthetic gas is c	changed from 760 mmHg to 304
	mmHg. W	That will the new v	volume be, if the	e temperature remains constant?
	-			

2. A balloon is filled with 30.0 L of helium at 1 atm. What is the volume when the balloon rises to an altitude where the pressure is 0.250 atm.

E.		ries Law duction:	ior Ten	<u>iperature-</u>	v orume (<u>Cnanges</u>	-	
	111110		ite zero:					
		* Kelvin	temners	 nture:				
			00 C				K	
		10	70 C				- 11	
		25	5 C				K	
		0 (С				K	
		-2	73.14 C				K	(Absolute zero - never attained)
		*Jacques	s Charles	s'(1746-182	23) 1787		_	,
Proi	BLEM:	-		•		-		temperature & volume of a gas?
					-			e gas is measured.
		-		ARIABLE:	C			ONDING VARIABLE:
DATA	<u>a: Ten</u>	perature	(C)Vol	ume (L)	GRA	<u>.PH</u> :		1
		25 (K)	5.00				
		50 (K)	5.42				
		75 (K)	5.84				
		100 (K)	5.26				
ANAI	LYSIS:	·						
								1
	<u>Char</u>	les' Law:						
	Form	nula:		 				
			sets of	measureme	ents on th	ne same o	36.	
		paring two nple:	sets of	incasarcine	ints on th	ic same g	.as	
		A balloo If it is he	eated to 5		is the nev			27 C, and has a volume of 4.0 I he balloon if the pressure is
	2)	_		-				emperature is required to reduce ert answer back to C.)

F. Gay-Lussac's Law for Temperature-Pressure Changes

Introduction:
* On a hot summer day the pressure in a car tire increases. Why?
* In 1802 Joseph Gay-Lussac (1778-1850) explained this relationship
Gay Lussac's Law:
Farmer La
Formula:
Comparing two sets of measurements on the same gas:
Graph:
Example:
1) A gas in an aerosol can at a pressure of 1 atm at 27 C. The can is thrown in the fire
What is the pressure if the temperature reaches 927 C?
what is the pressure if the temperature reaches 321 C!

2) A gas has a pressure of 50.0 mmHg at 540 K. What is the temperature when the pressure is 18.5 mmHg?

* Boyle's, Charles' and Gay-Lussac's laws can be combined **Combined Gas Law: Formula: Comparing two sets of measurements on the same gas:

Example:

Combined Gas Law

G.

1) A balloon containing hydrogen gas at 20 C and a pressure of 100 kPa has a volume of 7.50 L. Calculate the volume of the balloon after it rises 10 km where the temperature is -36 C and the pressure is 28 kPa. (Assume that no hydrogen gas escapes.

A cylinder of compressed oxygen has a volume of 30 L and a pressure of 100 atm at 27 C. The cylinder is cooled until the pressure is 5.0 atm. What is the new temperature in C?

G. <u>Ideal Gas Law</u>

* Ide	al gas: a hypothetical gas that	all the gas laws	under	
	- does not condense into a	when cooled		
	- graphs have	lines		
	graphs havecomposed of particles of	size that do not		
	- real gases deviate from ideal gas	ses at temperatu	ıres &	_ pressure
* One	e can calculate the moles of a gas a			
	- The molar volume of an ideal ga	as is 22.414 L/mol. T	he molar volui	me of
	helium is 22.426 L/mol. The mol	ar volume of chlorine gas	is 22.063 L/m	ol
	- Therefore the the partic	cle the closer the gas reser	mbles an ideal	gas
* Av	ogadro stated that equal volumes of			
	in equal numbers of molecules (mo			
* Sur	nmary	•		
	- Boyle: volume of a gas is invers	ely proportional to pressu	re	
	-Charles: volume of a gas in direc	tly proportional to Kelvin	temperature	
	- Avogadro: volume of a gas is di	rectly proportional to the	number of mol	les
	- COMBINATION: v n T 1/P			
	- Ideal gas law constant(R): At ST	TP R = Pv/nT = (101.3kPa)	a x 22.4L)/(1m	ol x 273K)
	$R = \underline{\qquad} \underline{L \times kPa} \text{ or } \underline{\qquad}$			
	K x mol	K x mol	K x mol	
<u>Ideal</u>	Gas Law: the product of the pressu	ure and volume is directly	proportional t	to the
amou	ant and absolute temperature of the	gas.		
Form				
Exan	nple:1) What mass of neon should	be introduced into an eva-	cuated 0.88L to	ube to
produ	ice a pressure of 90 kPa at 30 C?			
2)	A cylinder containing 20.0 L of n		to 200 atm at 2	27 C. How
	many moles of nitrogen gas are pr	resent?		
3)	A cylinder contains 2.24 x 106 L			and a
	temperature of 42 C. How many	grams of methane are in t	he container?	

H. Gas Stoichiometry Steps of Stoichiometr 1.	y
2a.	
2b.	
3.	
4.	
5.	

Example:

6.

In an industrial application known as the Harber process ammonia to be used as fertilizer results from the reaction of nitrogen and hydrogen. What is the percent yield of ammonia, if 12kL is produced at 450 kPa pressure and 80°C from the reaction of 7.5 kg of hydrogen with 7.0x10²⁶ particles of nitrogen?