Student Worksheet Chapter 1 Checklist

LSM 1.CS

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

classify matter as pure and mixtures as homogeneous and heterogeneous (1.2)	
interpret the periodic table of the elements (1.3)	
use atomic theory to explain the periodic table (1.4)	
classify elements and compounds, and know the properties of each class (1.3, 1.4)	
explain and predict chemical formulas for and name ionic and molecular compounds, acids, and bases (1.5, 1.6)	
identify the state of matter of substances (1.5, 1.6)	
write chemical equations when given reactants and products (1.5, 1.6)	
classify scientific knowledge as qualitative and quantitative, as observations and interpretations, and as empirical and theoretical (1.1)	

STS

describe the natures of science and technology (1.1)	
describe the application of some common chemicals (1.3, 1.5, 1.6)	

Skills

use a textbook, a periodic table, and other references efficiently and effectively (1.1–1.6)	
interpret and write laboratory reports (1.1, 1.2, 1.3, 1.4, 1.6)	
select and use diagnostic tests (1.2, 1.3, 1.4, 1.5, 1.6)	

Key Terms

ive y iv		
1.1	science	
	technology	
	chemistry	
	observation	
	interpretation	
	empirical knowledge	
	theoretical knowledge	
	empirical hypothesis	
	empirical definition	
	generalization	
	scientific law	
	law of conservation of mass	
1.2	matter	
	pure substance	
	mixture	
	heterogeneous mixture	
	homogeneous mixture	
	element	
	entity	
	atom	
	compound	
	chemical formula	
1.3	periodic law	
	family	
	group	
	period	
	semi-metal	
	standard ambient temperature and pressure (SATP)	
	metal	
	nonmetal	
	alkali metal	
	alkaline-earth metal	
	halogen	
	noble gas	
	main group element	
	transition element	

LSM 1.CS (cont'd)

1.4	theoretical hypothesis
	theoretical definition
	theory
	mass number
	atomic number
	ion
	monatomic ion
	cation
	anion
1.5	ionic compound
	molecular compound
	acid
	base
	neutral
	aqueous solution
	polyatomic ion
	formula unit
	empirical formula
	hydrate
1.6	molecule
	molecular formula
	diatomic molecule

Student Worksheet Chapter Checklist

LSM 2.CS

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

use kinetic molecular theory and collision theory to explain how chemical reactions occur (2.2)	
write balanced chemical equations (2.2, 2.3)	
interpret balanced chemical equations in terms of chemical amount (in moles) (2.3)	
convert between chemical amount and mass (2.4)	
classify chemical reactions (2.5, 2.6)	
predict the solubility of elements and ionic and molecular compounds in water (2.6)	
predict products for chemical reactions (2.5, 2.6)	

STS

state the technological application of important chemicals and chemical reactions (2.1, 2.3, 2.4, 2.5, 2.6)	
identify risks and benefits of some important chemical reactions (2.1, 2.3, 2.5)	

Skills

read and write laboratory reports (2.6)	
create and critique experimental designs (2.6)	

Key Terms

	ns
2.1	STS
	perspective
	scientific
[t	technological
	ecological
	economic
	political
2.2	physical change
	chemical change
1	nuclear change
	kinetic molecular theory
	diagnostic test
	palanced chemical equation
	coefficient
2.3	chemical amount
	Avogadro's number
	mole
2.4	molar mass
2.5	formation reaction
	simple decomposition reaction
1 1	complete combustion reaction
2.6	solution
	solute
	solvent
	solubility
	precipitate
1 1	single replacement reaction
	double replacement reaction

Gravimetric Stoich

Student Worksheet Chapter Checklist

LSM 7.CS

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

identify limitations and assumptions about chemical	
reactions (7.1)	
write balanced ionic and net	
ionic equations, including	
identification of spectator ions,	
for reactions taking place in	
aqueous solutions (7.1)	
recognize limiting and excess	
reagents in chemical	
reactions (7.1, 7.2, 7.3, 7.4)	
calculate quantities of	
reactants and/or products	
involved in chemical reactions	
using gravimetric, solution, or	
gas stoichiometry (7.2, 7.3,	
7.4)	
define predicted (theoretical)	
and experimental (actual)	
yields, and explain the	
discrepancy between them	
(7.2, 7.3)	
identify sources of	
experimental uncertainty in	
experiments	
(7.2, 7.3, 7.4)	

STS

•		
	state that a goal of technology	-
l	is to solve practical problems	
l	(7.2, 7.3, 7.4)	
l	recognize that technological	
l	problem solving may	
l	incorporate knowledge from	
l	various fields (7.2, 7.3)	
I	classify and evaluate	
l	technologies (7.2, 7.3, 7.4)	
	explain how the	
l	appropriateness and the risks	
l	and benefits of technologies	
l	need to be assessed for each	
l	potential application from a	
	variety of perspectives,	
l	including sustainability (7.3)	
•		

initiating	plan and predict states,	
and	products, and theoretical yields	
planning	for chemical reactions (7.2)	
	describe procedures for safe	
	handling, storing, and disposal	
	of materials used in the	
	laboratory, with reference to	
	WHMIS and consumer product	
	labelling information (7.2, 7.4)	
performing	translate word equations for	
and	chemical reactions into	
recording	chemical equations, including	
	states of matter for the	
	products and reactants (7.2)	
	balance chemical equations for	
	chemical reactions, using	
	lowest whole-number	
	coefficients (7.2)	
analyzing	interpret stoichiometric ratios	
and	from chemical reaction	
interpreting	equations (7.2, 7.3, 7.4)	
	perform calculations to	
	determine theoretical yields	
	(7.2)	
	use appropriate SI notation,	
	fundamental and derived units.	
	and significant digits when	
	performing stoichiometry	
	calculations (7.2, 7.3, 7.4)	
communi-	work collaboratively in	
cation and	addressing problems and	
teamwork	applying the skills and	
Countryork	conventions of science in	
	communicating information	
	and ideas and in assessing	
	results (7.2)	

Key Terms

7.1	quantitative reaction	
	stoichiometric reaction	
	net ionic equation	
	spectator ion	
	limiting reagent	
	excess reagent	
7.2	stoichiometry	
	theoretical yield	
	gravimetric stoichiometry	
	percent yield	
7.3	gas stoichiometry	
7.4	solution stoichiometry	

Key STS

Key SIS	
evaluate technologies from a	
variety of perspectives (Section	
7.1 Questions 10, 11; Section 7.2	
Question 5; CS: Producing	
Hydrogen for Fuel Cells q.4;	
Section 7.3 Question 6; Section	
7.4 Question 7)	
consider technological solutions	
for society's energy problems	
(Extension: Family Farming and	
Future Fuels; Section 7.3	
Practice question 3; CS:	
Producing Hydrogen for Fuel	
Cells; Section 7.3	
Question 5)	
recognize the need for	
stoichiometry in industrial	
applications (Sections 7.2 to 7.4;	
Section 7.2 Practice question 10;	
CC: Chemical Technologist; Inv.	
7.1; Lab Ex.7.A; Inv. 7.2; Lab	
Ex.7.B; Section 7.3 Practice	
questions 2, 3; Inv. 7.3; CS:	
Producing Hydrogen for Fuel	
Cells; Section 7.3 Question 7;	
Inv. 7.4; SP 7.4; Section 7.4	
Practice questions 1, 2; Lab	
Ex.7.C; Lab Ex.7.D; Section 7.4	
Questions 2, 4, 5, 7)	
research a variety of careers	
(WA: Canadian Achievers—	
Roberta Bondar; CC: Aerospace	
Engineer; CC: Chemical	
Engineer; CC: Chemical	
Technologist; CS: Producing	
Hydrogen for Fuel Cells; CC: Soil	
Scientist)	
Colonidoty	L

use lab skills for stoichiometric determinations (Inv. 7.1: Decomposing Malachite; Lab Ex.7.A: Testing the Stoichiometric Method; Inv. 7.2: Gravimetric Stoichiometry; Lab Ex.7.B: Testing a Chemical Process; Inv. 7.3: Producing Hydrogen; CS: Producing Hydrogen for Fuel Cells; Inv. 7.4: Analysis of Silver Nitrate (Demo); Lab Ex.7.C: Testing Solution Stoichiometry; Lab Ex.7.D: Determining a Solution Concentration)	
calculate quantity conversions (Sections 7.2 to 7.4; Inv. 7.1: Decomposing Malachite; Lab Ex.7.A: Testing the Stoichiometric Method; Inv. 7.2: Gravimetric Stoichiometry; Lab Ex.7.B: Testing a Chemical Process; Section 7.2 Questions 8, 10; Inv. 7.3: Producing Hydrogen; Section 7.3 Questions 3-8; Inv. 7.4: Analysis of Silver Nitrate (Demo); Lab Ex.7.C: Testing Solution Stoichiometry; Lab Ex.7.D: Determining a Solution Concentration; Section 7.4 Practice questions 1–3; Section 7.4 Questions 1–6)	
calculate percent yield (Section 7.2; Section 7.2 Questions 7, 8, 10; Section 7.4 Question 4)	

Bonding

Student Worksheet Solutions Chapter Checklist

LSM 3.CS

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

Kilowieuge	
explain why formulas for ionic compounds refer to the simplest whole-number ratio of ions that result in a net charge of zero (3.1)	
define valence electron, electronegativity, and ionic bond (3.1, 3.3)	
use the periodic table and Lewis structures to support and explain ionic bonding theory (3.1)	
explain how an ionic bond results from the simultaneous attraction of oppositely charged ions (3.1)	
draw or build models of common ionic lattices and relate structures and properties (3.5)	
explain why the formulas for molecular substances refer to the number of atoms of each constituent element (3.2)	
relate electron pairing to covalent bonds (3.1, 3.2)	
build models depicting the structure of simple covalent molecules, including selected organic compounds (3.2)	
draw electron-dot diagrams (Lewis symbols and formulas) of atoms and molecules, writing structural formulas for molecular substances and using Lewis structures (formulas) to predict bonding in simple molecules (3.2)	
apply VSEPR theory to predict molecular shapes (3.3)	
illustrate, by drawing or building models, the structure of simple molecular substances (3.2)	
explain intermolecular forces, London (dispersion) forces, dipole—dipole attractions, and hydrogen bonding (3.4)	
relate properties of substances to the predicted intermolecular bonding in the substance (3.4, 3.5)	

determine the polarity of a molecule based on simple structural shapes and unequal charge distribution (3.3)	
describe bonding as a continuum ranging from complete electron transfer to equal sharing of electrons. (3.3, 3.4)	

STS

state that the goal of science is knowledge about the natural world (3.1, 3.3, 3.5)	
list the characteristics of empirical and theoretical knowledge (3.1)	
evaluate scientific knowledge and restrict, revise, or replace it where necessary (3.1, 3.4, 3.5)	
state examples of science leading technology and technology leading science (3.1, 3.5)	

initiating and planning	design an investigation to determine the properties of ionic compounds (3.5);	
	describe procedures for safe handling, storage, and disposal of laboratory materials (3.3, 3.4, 3.5);	
performing and recording	draw Lewis formulas and build models of ionic solids (3.5); build models depicting the structure of simple covalent molecules (3.2, 3.4); carry out an investigation to determine the melting points of molecular substances (3.4)	

LSM 3.CS (cont'd)

analyzing and interpreting	identify trends and patterns in the melting points of a related	
	series of molecular substances (3.4);	
V de la constanta de la con	determine the properties of ionic compounds (3.5)	
	communication and teamwork:	
communi- cation and teamwork	working cooperatively, critically analyze and evaluate models and graphs constructed by others (3.2, 3.3, 3.5)	

Key Terms

3.1	structural formula
	valence electron
	orbital
	valence orbital
	bonding electron
	lone pair
	octet rule
	Lewis symbol
	electronegativity
	covalent bond
	ionic bond
3.2	bonding capacity
	empirical formula
	molecular formula
	Lewis formula
	structural formula
	stereochemical formula

3.3	stereochemistry
	VSEPR theory
	polar molecule
	nonpolar molecule
	nonpolar covalent bond
	polar covalent bond
	bond dipole
3.4	intermolecular force
	van der Waals force
	dipole-dipole force
	London force
	isoelectronic molecules
	hydrogen bond
3.5	crystal lattice
	covalent network

Key STS

understand the importance of bonding in household products, such as detergents	
appreciate the importance of science and technology in the production of new materials such as semiconductors	

create models of molecular and ionic compounds	
use empirical observations to draw conclusions about bonding	
predict properties, such as melting or boiling point, of molecular substances	

Student Worksheet Chapter Checklist

LSM 5.CS

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

explain the nature of solutions and	
the dissolving process (5.1, 5.2)	
illustrate how dissolving substances	
in water is often a prerequisite for	
chemical change (5.1, 5.2)	
differentiate between electrolytes	
and nonelectrolytes (5.1, 5.2)	
explain dissolving as an	
endothermic or an exothermic	
process with regard to breaking and	
forming of bonds (5.2)	
express concentration in various	
ways (5.3)	
perform calculations involving	
concentration, chemical amount,	
volume and/or mass (5.3)	
use dissociation equations to	
calculate ion concentration (5.3)	
describe the procedures and	
calculations required for preparing	
solutions from a pure solid and by	
dilution (5.4)	
define solubility and identify the	
factors that affect it (5.5)	
explain a saturated solution in terms	
of equilibrium (5.5)	

STS

illustrate how science and	
technology are developed to meet	
societal needs and expand human	
capabilities (5.1)	
describe interactions of science,	
technology and society (5.3, 5.5)	
relate scientific and technological	
work to personal and social values	
such as honesty, perseverance,	
tolerance, open-mindedness,	
critical-mindedness, creativity and	
curiosity (5.1, 5.3, 5.4, 5.5)	
illustrate how science and	
technology have both intended and	
unintended consequences (5.3, 5.5)	
evaluate technologies from a variety	
of perspectives (5.4, 5.5)	

initiating and planning	design a procedure to identify the type of solution (5.1)	
	design a procedure for determining the concentration of a solution containing a solid solute (5.4)	
	describe procedures for safe handling, storing, and disposal of material used in the laboratory, with reference to WHMIS and consumer product labelling information (5.1, 5.4, 5.5)	
performing and recording	use a conductivity apparatus to classify solutions (5.1)	
	perform an experiment to determine the concentration of a solution (5.4, 5.5)	
	use a balance and volumetric glassware to prepare solutions of specified concentration (5.4)	
	perform an investigation to determine the solubility of a solute in a saturated solution (5.5)	
analyzing and interpreting	use experimental data to determine the concentration of a solution (5.5)	
communi- cation and teamwork	compare personal concentration data with the data of other groups (5.4, 5.5)	

LSM 5.CS (cont'd)

Key Terms

		
5.1	solution	
	solute	
	solvent	
	electrolyte	
	nonelectrolyte	
5.2	dissociation	
	ionization	
5.3	concentration	
	amount concentration	
5.4	standard solution	
	stock solution	
5.5	saturated solution	
	solubility	
	dynamic equilibrium	

Key STS

_		
1	explore the effects of pesticides in the	
1	environment (CC: Toxicologist;	
1	Section 5.3 Question 19; Explore an	
L	Issue: Pesticides)	
	identify solutions in everyday life	
	(Section 5.1; CC: Waste Water and	
	Water Treatment Plant Operator;	
	Section 5.3; WA: David Schindler; CS:	
	Household Chemical Solutions;	
	Section 5.4 Question 10; EI:	
į	Pesticides)	
ſ	be familiar with the Responsible	
	Care® program (CS: Household	
Ĺ	Chemical Solutions)	

design laboratory procedures involving concentrations (Inv. 5.4)	
use volumetric glassware to prepare solutions (Inv. 5.2 and 5.3)	
research the risks and benefits of using pesticides on lawns (Section 5.3 Question 19; Explore an Issue: Pesticides)	

Acid/Bore

Student Worksheet Chapter Checklist

LSM 6.CS

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

Kilowieage	
recall the empirical definitions of acidic, basic, and neutral solutions determined by using indicators, pH, and electrical conductivity (6.1)	
calculate H ₃ O+(aq) and OH ⁻ (aq) concentrations, pH, and pOH of acid and base solutions based on logarithmic expressions (6.2)	
use appropriate SI units to communicate the concentration of solutions and express pH and concentration to the correct number of significant digits (6.2)	
compare magnitude changes in pH and pOH with changes in concentration for acids and bases (6.2)	
explain how the use of indicators, pH meters or pH paper can be used to measure [H ₃ O+(aq)] (6.3)	
use the modified Arrhenius theory to define acids as substances that produce H ₃ O+(aq) in aqueous solutions and bases as substances that produce OH ⁻ (aq) in aqueous solutions, and recognize that the definitions are limited (6.4)	
define neutralization as a reaction between hydronium and hydroxide ions (6.4)	
differentiate between strong acids and bases and weak acids and bases, qualitatively, using the modified Arrhenius (reaction with water) theory and dissociation (6.5)	
compare the reaction with water (ionization) of monoprotic with that of polyprotic acids and bases (6.5)	

STS

state that the goal of technology is to provide solutions to practical problems (all sections)	
recognize that solutions to technological problems may have both intended and unintended consequences (all sections)	

initiating and planning	design a procedure to determine the properties of acids and bases (6.1, 6.5)	
	design an experiment to differentiate between weak and strong acids, and between weak and strong bases (6.1, 6.3, 6.4)	
	describe procedures for safe handling, storing and disposal of materials (6.1, 6.3, 6.4, 6.5)	
performing and recording	construct and analyze a table or graph comparing pH and hydronium ion concentration (6.2)	
analyzing and interpreting	use a pH meter (or paper) and indicators to determine acidity and pH (6.1, 6.3, 6.4, 6.5)	
communi- cation and teamwork	work collaboratively to assess technologies (6.4)	

Key Terms

6.1	hydronium ion	
6.2	pH	
	pOH	
6.3	acid-base indicator	
6.4	acid (modified Arrhenius)	
	base (modified Arrhenius)	
	neutralization	
6.5	strong acid	
	weak acid	
	strong base	
	weak base	
	monoprotic acid	
	polyprotic acid	
	monoprotic base	
	polyprotic base	

Key STS

be aware of the pH of solutions encountered in everyday life (Section 6.1 Question 7; Section 6.2 Practice q.1-3, 5, 6; CC: Ecologist; WA: Bad Hair Day; Section 6.3 Questions 3, 5, 10-14; Section 6.3 Question 5; Extension: Soil Acidity and Plant Growth; CS: Acid Deposition)	
be familiar with some consumer, commercial, and industrial applications of acids and bases (Exploration: Consumer Products; Section 6.1 Question 6; WA: Bad Hair Day?; Section 6.4 Questions 8, 9)	
understand strength and concentration of everyday acids and bases (Section 6.2 Practice q.1, 3; Section 6.3 Questions 3, 5, 1; Section 6.5; Inv. 6.3: Properties of Acids; Section 6.5 Question 14)	
carry out research into careers (CC: Ecologist; CC: Medical Laboratory Technologist)	

Acid Base

Student Worksheet Chapter Checklist

LSM 8.CS

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

contrast quantitative and qualitative chemical analysis	
(8.1)	
use the stoichiometric method to calculate quantities of	
substances in chemical reactions (8.2, 8.3, 8.4)	
describe different designs for determining the concentration of a solution (8.2, 8.4)	
identify and calculate limiting and excess reagents in chemical reactions (8.3)	
identify the equivalence point on a strong acid—strong base titration curve, and differentiate between an indicator endpoint and a reaction equivalence point (8.4, 8.5)	
describe the function and choice of indicators in acid–base titrations (8.4, 8.5)	

STS

state examples of science	
leading technology and	
technology leading science (8.1,	
8.3)	
state that a goal of technology is	
the solution of practical problems	
(8.2, 8.3, 8.4, 8.5)	
evaluate an experiment based on	
a precipitation reaction, to	
determine the concentration of a	
solution (8.2)	
create and interpret titration	
curve graphs for acid-base	
experiments restricted to strong	
monoprotic acid-strong	
monoprotic base	
combinations (8.5)	

	T	
initiating	design an experiment to	
and	identify an ion (8.1);	
planning	design a method using	
	crystallization, filtration, or	
	titration to determine the	
	concentration of a solution	
	(8.4)	
	describe procedures for safe	
	handling, storage, and	
	disposal of materials used in	
1	the laboratory, with	
	reference to WHMIS and	
	consumer product labelling	
	information (8.3, 8.4)	
	predict the approximate	
	equivalence point for a	
	strong monoprotic acid-	
	strong monoprotic base	
	titration and select an	
	appropriate indicator (8.5)	
performing	perform a titration to	
and	determine the concentration	
recording	of an acid or base restricted	
recording	to strong monoprotic acid—	
	strong monoprotic base	
analyzing	combinations (8.4) interpret stoichiometric ratios	
and	from chemical reaction	
interpreting	equations (8.2, 8.3, 8.4)	
	calculate theoretical and	
	actual yield and percent	
	yield and error, and account	
	for discrepancies (8.3)	
	use appropriate SI notation,	
	fundamental and derived	
	units, and significant digits	
	when performing	
	stoichiometric calculations	
	(8.1, 8.2, 8.3, 8.4, 8.5)	
communi-	standardize an acid or base	
cation and	solution and compare group	
teamwork	results (8.4)	

LSM 8.CS (cont'd)

Key Terms

8.1	colorimetry	-
	gravimetric analysis	
İ	titration analysis	
8.4	titration	
	titrant	
	sample	
	equivalence point	
	endpoint	
	standard solution	
	primary standard	
1	standardizing	

Key STS

evaluate technologies from a variety of perspectives (Section 8.1; CS: The Haber Process; CS: Analytic Measurement Technology)	
research a variety of careers (WA: Ursula Franklin; CC: Hydrologist; WA: Blood Alcohol Content)	

perform titrations (Inv. 8.4:	
Titration Analysis of Vinegar; Inv.	
8.6: Titration Analysis of ASA)	
draw and interpret titration curves	
(Section 8.5; Inv. 8.5: pH Curves	
(Demo); Extension: Indicator	
Choice; Section 8.5 Practice	
question 2; Mini Inv: Titration	
Curves (Simulation); Inv. 8.6;	
Section 8.5 Question 1)	
predict the equivalence point pH	
for a strong monoprotic	
acid-strong monoprotic base	
titration (Section 8.5; Inv. 8.5: pH	
Curves (Demonstration); Mini Inv.:	
Titration Curves (Simulation);	
Section 8.5 Question 3)	

Student Worksheet Chapter Checklist

LSM 4.CS

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

STS

identify and use a scientific problem-	
solving model (all sections)	
state that the goal of science is	
knowledge about the natural world	
(all sections)	

Key Terms

4.1	pressure
	atmospheric pressure
	STP
	SATP
	Boyle's law
	absolute zero
	absolute temperature scale
	Charles' law
	combined gas law
4.2	law of combining volumes
	Avogadro's theory
4.3	molar volume
4.4	ideal gas
	ideal gas law
	universal gas constant

initiating and planning	state hypotheses and make predictions related to the pressure, temperature, and volume of a gas (4.1, 4.4); describe procedures for safe use and disposal of laboratory materials (4.1, 4.4)	
performing and recording	perform laboratory and simulated experiments to illustrate the gas laws, identifying and controlling variables (4.1, 4.4); use thermometers, balances, and other measuring devices to collect data on gases (4.1, 4.4); use research tools to collect information about real and ideal gases and applications of gases (all sections); perform an investigation to determine the molar mass from gaseous volume (4.4)	
analyzing and interpreting	draw and interpret graphs of experimental evidence that relate pressure and temperature to gas volume (4.1); identify the limitations of measurement (4.1, 4.4); identify a gas based on an analysis of experimental evidence (4.4)	
communi- cation and teamwork	use appropriate SI notation and certainty in significant digits (all sections); work collaboratively and communicate effectively (all sections)	

LSM 4.CS (cont'd)

Key STS

use measurement technologies	
related to gases (Section 4.1;	
Inv.4.1, 4.2; CS: Weather Forecasts;	
Lab Ex.4.B; Inv.4.3)	
examples of the role of gases in	
breathing (CC: Respiratory	
Therapist; DYK: Gas Laws and	
Breathing), balloons (Section 4.1,	
4.3), weather (CS: Weather	
Forecasts), scuba diving (CS:	
Compressed Gases), air bags	
(Chapter opener), and chemical	
industries (Section 4.2 Questions)	
understand nature of weather	
forecasting (CC: Meteosrologist; CS:	
Weather Forecasts)	
careers (CC: Respiratory Therapist;	
CS: Compressed Gases; WA:	
Canadian Achievers—Elizabeth	
MacGill; CC: Meteorologist)	

design, perform, analyze, and evaluate gas law experiments (Lab Ex.4.A; Inv.4.1, 4.2; Section 4.1 Questions; Section 4.3 Question; Lab Ex.4.B: Evaluating an Experimental Design; Inv.4.3; Unit Review)	
use library and electronic research tools to collect information about gases (Bio Connection: Gas-Dependent Processes; CS: Compressed Gases; WA: Web Quest—"Designer Air" for Tires; WA: Simulation—The Ideal Gas Law; Section 4.4 Questions; Unit Review)	
use laboratory equipment and computer software to collect and analyze results of gas law experiments (Inv.4.1, 4.2; WA: The Combined Gas Law; WA: Simulation—The Ideal Gas Law) communicate evidence and calculations using SI notation and appropriate certainty (all)	